1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
|
########################################################################
##
## Copyright (C) 2004-2024 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING. If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################
##
## Original version by Paul Kienzle distributed as free software in the
## public domain.
## -*- texinfo -*-
## @deftypefn {} {@var{S} =} __sprand__ (@var{s}, @var{randfcn})
## @deftypefnx {} {@var{S} =} __sprand__ (@var{m}, @var{n}, @var{d}, @var{fcnname}, @var{randfcn})
## @deftypefnx {} {@var{S} =} __sprand__ (@var{m}, @var{n}, @var{d}, @var{rc}, @var{fcnname}, @var{randfcn})
## Undocumented internal function.
## @end deftypefn
## Actual implementation of sprand and sprandn happens here.
function S = __sprand__ (varargin)
if (nargin == 2)
[m, randfcn] = deal (varargin{1:2});
[i, j] = find (m);
[nr, nc] = size (m);
S = sparse (i, j, randfcn (size (i)), nr, nc);
else
if (nargin == 5)
[m, n, d, fcnname, randfcn] = deal (varargin{:});
else
[m, n, d, rc, fcnname, randfcn] = deal (varargin{:});
endif
if (! (isscalar (m) && m == fix (m) && m >= 0))
error ("%s: M must be a non-negative integer", fcnname);
endif
if (! (isscalar (n) && n == fix (n) && n >= 0))
error ("%s: N must be a non-negative integer", fcnname);
endif
if (d < 0 || d > 1)
error ("%s: density D must be between 0 and 1", fcnname);
endif
if (m == 0 || n == 0)
S = sparse (m, n);
return;
endif
if (nargin == 5)
mn = m*n;
k = round (d*mn);
if (mn > sizemax ())
## randperm will overflow, so use alternative methods
idx = unique (fix (rand (1.01*k, 1) * mn)) + 1;
## idx contains random numbers in [1,mn]
## Generate 1% more random values than necessary in order to reduce the
## probability that there are less than k distinct values; maybe a
## better strategy could be used but I don't think it's worth the price.
## actual number of entries in S
k = min (length (idx), k);
j = floor ((idx(1:k) - 1) / m);
i = idx(1:k) - j * m;
j += 1;
else
idx = randperm (mn, k);
[i, j] = ind2sub ([m, n], idx);
endif
S = sparse (i, j, randfcn (k, 1), m, n);
elseif (nargin == 6)
## Create a matrix with specified reciprocal condition number.
if (! isscalar (rc) && ! isvector (rc))
error ("%s: RC must be a scalar or vector", fcnname);
endif
## We want to reverse singular valued decomposition A=U*S*V'.
## First, first S is constructed and then U = U1*U2*..Un and
## V' = V1*V2*..Vn are seen as Jacobi rotation matrices with angles and
## planes of rotation randomized. Repeatedly apply rotations until the
## required density for A is achieved.
if (isscalar (rc))
if (rc < 0 || rc > 1)
error ("%s: reciprocal condition number RC must be between 0 and 1", fcnname);
endif
## Reciprocal condition number is ratio of smallest SV to largest SV
## Generate singular values randomly and sort them to build S
## Random singular values in range [rc, 1].
v = rand (1, min (m,n)) * (1 - rc) + rc;
v(1) = 1;
v(end) = rc;
v = sort (v, "descend");
S = sparse (diag (v, m, n));
else
## Only the min (m, n) greater singular values from rc vector are used.
if (length (rc) > min (m,n))
rc = rc(1:min (m, n));
endif
S = sparse (diag (sort (rc, "descend"), m, n));
endif
Uinit = speye (m);
Vinit = speye (n);
k = round (d*m*n);
while (nnz (S) < k)
if (m > 1)
## Construct U randomized rotation matrix
rot_angleu = 2 * pi * rand ();
cu = cos (rot_angleu); su = sin (rot_angleu);
rndtmp = randperm (m, 2);
i = rndtmp(1); j = rndtmp(2);
U = Uinit;
U(i, i) = cu; U(i, j) = -su;
U(j, i) = su; U(j, j) = cu;
S = U * S;
endif
if (n > 1)
## Construct V' randomized rotation matrix
rot_anglev = 2 * pi * rand ();
cv = cos (rot_anglev); sv = sin (rot_anglev);
rndtmp = randperm (n, 2);
i = rndtmp(1); j = rndtmp(2);
V = Vinit;
V(i, i) = cv; V(i, j) = sv;
V(j, i) = -sv; V(j, j) = cv;
S *= V;
endif
endwhile
endif
endif
endfunction
|