1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
|
########################################################################
##
## Copyright (C) 2000-2024 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING. If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################
## -*- texinfo -*-
## @deftypefn {} {@var{B} =} spdiags (@var{A})
## @deftypefnx {} {[@var{B}, @var{d}] =} spdiags (@var{A})
## @deftypefnx {} {@var{B} =} spdiags (@var{A}, @var{d})
## @deftypefnx {} {@var{A} =} spdiags (@var{v}, @var{d}, @var{A})
## @deftypefnx {} {@var{A} =} spdiags (@var{v}, @var{d}, @var{m}, @var{n})
## A generalization of the function @code{diag}.
##
## Called with a single input argument, the nonzero diagonals @var{d} of
## @var{A} are extracted.
##
## With two arguments the diagonals to extract are given by the vector @var{d}.
##
## The other two forms of @code{spdiags} modify the input matrix by replacing
## the diagonals. They use the columns of @var{v} to replace the diagonals
## represented by the vector @var{d}. If the sparse matrix @var{A} is
## defined then the diagonals of this matrix are replaced. Otherwise a
## matrix of @var{m} by @var{n} is created with the diagonals given by the
## columns of @var{v}.
##
## Negative values of @var{d} represent diagonals below the main diagonal, and
## positive values of @var{d} diagonals above the main diagonal.
##
## For example:
##
## @example
## @group
## spdiags (reshape (1:12, 4, 3), [-1 0 1], 5, 4)
## @result{} 5 10 0 0
## 1 6 11 0
## 0 2 7 12
## 0 0 3 8
## 0 0 0 4
## @end group
## @end example
##
## @seealso{diag}
## @end deftypefn
function [B, d] = spdiags (v, d, m, n)
if (nargin < 1)
print_usage ();
endif
if (nargin == 1 || nargin == 2)
## extract nonzero diagonals of A into B,d
[nr, nc] = size (v);
[i, j] = find (v);
if (nargin == 1)
## d contains the active diagonals
d = unique (j-i);
endif
## FIXME: Maybe this could be done faster using [i,j,v] = find (v)
## and then massaging the indices i, j. However, some
## benchmarking has shown that diag() written in C++ makes
## the following code faster even with the for loop.
Brows = min (nr, nc);
B = zeros (Brows, length (d));
for k = 1:length (d)
dn = d(k);
if (dn <= -nr || dn > nc)
continue;
endif
dv = diag (v, dn);
len = rows (dv);
## Put sub/super-diagonals in the right place based on matrix size (MxN)
if (nr >= nc)
if (dn > 0)
offset = Brows - len + 1;
B(offset:Brows, k) = dv;
else
B(1:len, k) = dv;
endif
else
if (dn < 0)
offset = Brows - len + 1;
B(offset:Brows, k) = dv;
else
B(1:len, k) = dv;
endif
endif
endfor
elseif (nargin == 3)
## Replace specific diagonals d of m with v,d
[nr, nc] = size (m);
A = spdiags (m, d);
B = m - spdiags (A, d, nr, nc) + spdiags (v, d, nr, nc);
else
## Create new matrix of size mxn using v,d
[j, i, v] = find (v);
if (m >= n)
offset = max (min (d(:), n-m), 0);
else
offset = d(:);
endif
j = j(:) + offset(i(:));
i = j - d(:)(i(:));
idx = i > 0 & i <= m & j > 0 & j <= n;
B = sparse (i(idx), j(idx), v(idx), m, n);
endif
endfunction
%!test
%! [B,d] = spdiags (magic (3));
%! assert (d, [-2 -1 0 1 2]');
%! assert (B, [4 3 8 0 0
%! 0 9 5 1 0
%! 0 0 2 7 6]);
%! B = spdiags (magic (3), [-2 1]);
%! assert (B, [4 0; 0 1; 0 7]);
## Test zero filling for supra- and super-diagonals
%!test
%! ## Case 1: M = N
%! A = sparse (zeros (3,3));
%! A(1,3) = 13;
%! A(3,1) = 31;
%! [B, d] = spdiags (A);
%! assert (d, [-2 2]');
%! assert (B, [31 0; 0 0; 0 13]);
%! assert (spdiags (B, d, 3,3), A);
%!test
%! ## Case 1: M > N
%! A = sparse (zeros (4,3));
%! A(1,3) = 13;
%! A(3,1) = 31;
%! [B, d] = spdiags (A);
%! assert (d, [-2 2]');
%! assert (B, [31 0; 0 0; 0 13]);
%! assert (spdiags (B, d, 4,3), A);
%!test
%! ## Case 1: M < N
%! A = sparse (zeros (3,4));
%! A(1,3) = 13;
%! A(3,1) = 31;
%! [B, d] = spdiags (A);
%! assert (d, [-2 2]');
%! assert (B, [0 13; 0 0; 31 0]);
%! assert (spdiags (B, d, 3,4), A);
%!assert (spdiags (zeros (1,0),1,1,1), sparse (0))
%!assert (spdiags (zeros (0,1),1,1,1), sparse (0))
%!assert (spdiags ([0.5 -1 0.5], 0:2, 1, 1), sparse (0.5))
## Test input validation
%!error <Invalid call> spdiags ()
|