File: svds.m

package info (click to toggle)
octave 9.4.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 144,300 kB
  • sloc: cpp: 332,784; ansic: 77,239; fortran: 20,963; objc: 9,396; sh: 8,213; yacc: 4,925; lex: 4,389; perl: 1,544; java: 1,366; awk: 1,259; makefile: 648; xml: 189
file content (323 lines) | stat: -rw-r--r-- 10,273 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
########################################################################
##
## Copyright (C) 2006-2024 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################

## -*- texinfo -*-
## @deftypefn  {} {@var{s} =} svds (@var{A})
## @deftypefnx {} {@var{s} =} svds (@var{A}, @var{k})
## @deftypefnx {} {@var{s} =} svds (@var{A}, @var{k}, @var{sigma})
## @deftypefnx {} {@var{s} =} svds (@var{A}, @var{k}, @var{sigma}, @var{opts})
## @deftypefnx {} {[@var{u}, @var{s}, @var{v}] =} svds (@dots{})
## @deftypefnx {} {[@var{u}, @var{s}, @var{v}, @var{flag}] =} svds (@dots{})
##
## Find a few singular values of the matrix @var{A}.
##
## The singular values are calculated using
##
## @example
## @group
## [@var{m}, @var{n}] = size (@var{A});
## @var{s} = eigs ([sparse(@var{m}, @var{m}), @var{A};
##                      @var{A}', sparse(@var{n}, @var{n})])
## @end group
## @end example
##
## The eigenvalues returned by @code{eigs} correspond to the singular values
## of @var{A}.  The number of singular values to calculate is given by @var{k}
## and defaults to 6.
##
## The argument @var{sigma} specifies which singular values to find.  When
## @var{sigma} is the string @qcode{'L'}, the default, the largest singular
## values of @var{A} are found.  Otherwise, @var{sigma} must be a real scalar
## and the singular values closest to @var{sigma} are found.  As a corollary,
## @code{@var{sigma} = 0} finds the smallest singular values.  Note that for
## relatively small values of @var{sigma}, there is a chance that the
## requested number of singular values will not be found.  In that case
## @var{sigma} should be increased.
##
## @var{opts} is a structure defining options that @code{svds} will pass
## to @code{eigs}.  The possible fields of this structure are documented in
## @code{eigs}.  By default, @code{svds} sets the following three fields:
##
## @table @code
## @item tol
## The required convergence tolerance for the singular values.  The default
## value is 1e-10.  @code{eigs} is passed @code{@var{tol} / sqrt (2)}.
##
## @item maxit
## The maximum number of iterations.  The default is 300.
##
## @item disp
## The level of diagnostic printout (0|1|2).  If @code{disp} is 0 then
## diagnostics are disabled.  The default value is 0.
## @end table
##
## If more than one output is requested then @code{svds} will return an
## approximation of the singular value decomposition of @var{A}
##
## @example
## @var{A}_approx = @var{u}*@var{s}*@var{v}'
## @end example
##
## @noindent
## where @var{A}_approx is a matrix of size @var{A} but only rank @var{k}.
##
## @var{flag} returns 0 if the algorithm has successfully converged, and 1
## otherwise.  The test for convergence is
##
## @example
## @group
## norm (@var{A}*@var{v} - @var{u}*@var{s}, 1) <= @var{tol} * norm (@var{A}, 1)
## @end group
## @end example
##
## @code{svds} is best for finding only a few singular values from a large
## sparse matrix.  Otherwise, @code{svd (full (@var{A}))} will likely be more
## efficient.
## @seealso{svd, eigs}
## @end deftypefn

function [u, s, v, flag] = svds (A, k, sigma, opts)

  persistent root2 = sqrt (2);

  if (nargin < 1)
    print_usage ();
  endif

  if (ndims (A) > 2)
    error ("svds: A must be a 2-D matrix");
  endif

  if (nargin < 4)
    opts.tol = 0;    # use ARPACK default
    opts.disp = 0;
    opts.maxit = 300;
  else
    if (! isstruct (opts))
      error ("svds: OPTS must be a structure");
    endif
    if (! isfield (opts, "tol"))
      opts.tol = 0;  # use ARPACK default
    else
      opts.tol = opts.tol / root2;
    endif
    if (isfield (opts, "v0"))
      if (! isvector (opts.v0) || (length (opts.v0) != sum (size (A))))
        error ("svds: OPTS.v0 must be a vector with rows (A) + columns (A) entries");
      endif
    endif
  endif

  if (nargin < 3 || strcmp (sigma, "L"))
    if (isreal (A))
      sigma = "LA";
    else
      sigma = "LR";
    endif
  elseif (isscalar (sigma) && isnumeric (sigma) && isreal (sigma))
    if (sigma < 0)
      error ("svds: SIGMA must be a positive real value");
    endif
  else
    error ("svds: SIGMA must be a positive real value or the string 'L'");
  endif

  [m, n] = size (A);
  max_a = max (abs (nonzeros (A)));
  if (isempty (max_a))
    max_a = 0;
  endif
  ## Must initialize variable value, otherwise it may appear to interpreter
  ## that code is trying to call flag() colormap function.
  flag = 0;

  if (max_a == 0)
    s = zeros (k, 1);  # special case of zero matrix
  else
    if (nargin < 2)
      k = min ([6, m, n]);
    else
      k = min ([k, m, n]);
    endif

    ## Scale everything by the 1-norm to make things more stable.
    b = A / max_a;
    b_opts = opts;
    ## Call to eigs is always a symmetric matrix by construction
    b_opts.issym = true;
    b_sigma = sigma;
    if (! ischar (b_sigma))
      b_sigma /= max_a;
    endif

    if (b_sigma == 0)
      ## Find the smallest eigenvalues
      ## The eigenvalues returns by eigs for sigma=0 are symmetric about 0.
      ## As we are only interested in the positive eigenvalues, we have to
      ## double k and then throw out the k negative eigenvalues.
      ## Separately, if sigma is nonzero, but smaller than the smallest
      ## singular value, ARPACK may not return k eigenvalues.  However, as
      ## computation scales with k we'd like to avoid doubling k for all
      ## scalar values of sigma.
      b_k = 2 * k;
    else
      b_k = k;  # Normal case, find just the k largest eigenvalues
    endif

    if (nargout > 1)
      [V, s, flag] = eigs ([sparse(m,m), b; b', sparse(n,n)],
                           b_k, b_sigma, b_opts);
      s = diag (s);
    else
      s = eigs ([sparse(m,m), b; b', sparse(n,n)], b_k, b_sigma, b_opts);
    endif

    if (ischar (sigma))
      norma = max (s);
    else
      norma = normest (A);
    endif
    ## We wish to exclude all eigenvalues that are less than zero as these
    ## are artifacts of the way the matrix passed to eigs is formed.  There
    ## is also the possibility that the value of sigma chosen is exactly
    ## a singular value, and in that case we're dead!! So have to rely on
    ## the warning from eigs.  We exclude the singular values which are
    ## less than or equal to zero to within some tolerance scaled by the
    ## norm since if we don't we might end up with too many singular
    ## values.
    if (b_sigma == 0)
      if (sum (s>0) < k)
        ## It may happen that the number of positive s is less than k.
        ## In this case, take -s (if s in an eigenvalue, so is -s),
        ## flipped upside-down.
        s = flipud (-s);
      endif
    endif
    tol = norma * opts.tol;
    ind = find (s > tol);
    if (length (ind) < k)
      ## Too few eigenvalues returned.  Add in any zero eigenvalues of B,
      ## including the nominally negative ones.
      zind = find (abs (s) <= tol);
      p = min (length (zind), k - length (ind));
      ind = [ind; zind(1:p)];
    elseif (length (ind) > k)
      ## Too many eigenvalues returned.  Select according to criterion.
      if (b_sigma == 0)
        ind = ind(end+1-k:end); # smallest eigenvalues
      else
        ind = ind(1:k);         # largest eigenvalues
      endif
    endif
    s = s(ind);

    if (length (s) < k)
      warning ("svds: returning fewer singular values than requested");
      if (! ischar (sigma))
        warning ("svds: try increasing the value of sigma");
      endif
    endif

    s *= max_a;
  endif

  if (nargout < 2)
    u = s;
  else
    if (max_a == 0)
      u = eye (m, k);
      s = diag (s);
      v = eye (n, k);
    else
      u = root2 * V(1:m,ind);
      s = diag (s);
      v = root2 * V(m+1:end,ind);
    endif

    if (nargout > 3)
      flag = (flag != 0);
    endif
  endif

endfunction


%!shared n, k, A, u, s, v, opts, rand_state, randn_state, tol
%! n = 100;
%! k = 7;
%! A = sparse ([3:n,1:n,1:(n-2)],[1:(n-2),1:n,3:n],[ones(1,n-2),0.4*n*ones(1,n),ones(1,n-2)]);
%! [u,s,v] = svd (full (A));
%! s = diag (s);
%! [~, idx] = sort (abs (s));
%! s = s(idx);
%! u = u(:, idx);
%! v = v(:, idx);
%! rand_state = rand ("state");
%! rand ("state", 42);
%! opts.v0 = rand (2*n,1);  # Initialize eigs ARPACK starting vector
%!                          # to guarantee reproducible results

%!testif HAVE_ARPACK
%! [u2,s2,v2,flag] = svds (A,k);
%! s2 = diag (s2);
%! assert (flag, ! 1);
%! tol = 15 * eps * norm (s2, 1);
%! assert (s2, s(end:-1:end-k+1), tol);

%!testif HAVE_ARPACK, HAVE_UMFPACK
%! [u2,s2,v2,flag] = svds (A,k,0,opts);
%! s2 = diag (s2);
%! assert (flag, ! 1);
%! tol = 15 * eps * norm (s2, 1);
%! assert (s2, s(k:-1:1), tol);

%!testif HAVE_ARPACK, HAVE_UMFPACK
%! idx = floor (n/2);
%! % Don't put sigma right on a singular value or there are convergence issues
%! sigma = 0.99*s(idx) + 0.01*s(idx+1);
%! [u2,s2,v2,flag] = svds (A,k,sigma,opts);
%! s2 = diag (s2);
%! assert (flag, ! 1);
%! tol = 15 * eps * norm (s2, 1);
%! assert (s2, s((idx+floor (k/2)):-1:(idx-floor (k/2))), tol);

%!testif HAVE_ARPACK
%! [u2,s2,v2,flag] = svds (zeros (10), k);
%! assert (u2, eye (10, k));
%! assert (s2, zeros (k));
%! assert (v2, eye (10, 7));
%!
%!testif HAVE_ARPACK
%! s = svds (speye (10));
%! assert (s, ones (6, 1), 8*eps);

%!testif HAVE_ARPACK <57185>
%! z = complex (ones (10), ones (10));
%! s = svds (z);
%! assert (isreal (s));

%!test
%! ## Restore random number generator seed at end of tests
%! rand ("state", rand_state);