1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
|
########################################################################
##
## Copyright (C) 2006-2024 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING. If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################
## -*- texinfo -*-
## @deftypefn {} {@var{s} =} svds (@var{A})
## @deftypefnx {} {@var{s} =} svds (@var{A}, @var{k})
## @deftypefnx {} {@var{s} =} svds (@var{A}, @var{k}, @var{sigma})
## @deftypefnx {} {@var{s} =} svds (@var{A}, @var{k}, @var{sigma}, @var{opts})
## @deftypefnx {} {[@var{u}, @var{s}, @var{v}] =} svds (@dots{})
## @deftypefnx {} {[@var{u}, @var{s}, @var{v}, @var{flag}] =} svds (@dots{})
##
## Find a few singular values of the matrix @var{A}.
##
## The singular values are calculated using
##
## @example
## @group
## [@var{m}, @var{n}] = size (@var{A});
## @var{s} = eigs ([sparse(@var{m}, @var{m}), @var{A};
## @var{A}', sparse(@var{n}, @var{n})])
## @end group
## @end example
##
## The eigenvalues returned by @code{eigs} correspond to the singular values
## of @var{A}. The number of singular values to calculate is given by @var{k}
## and defaults to 6.
##
## The argument @var{sigma} specifies which singular values to find. When
## @var{sigma} is the string @qcode{'L'}, the default, the largest singular
## values of @var{A} are found. Otherwise, @var{sigma} must be a real scalar
## and the singular values closest to @var{sigma} are found. As a corollary,
## @code{@var{sigma} = 0} finds the smallest singular values. Note that for
## relatively small values of @var{sigma}, there is a chance that the
## requested number of singular values will not be found. In that case
## @var{sigma} should be increased.
##
## @var{opts} is a structure defining options that @code{svds} will pass
## to @code{eigs}. The possible fields of this structure are documented in
## @code{eigs}. By default, @code{svds} sets the following three fields:
##
## @table @code
## @item tol
## The required convergence tolerance for the singular values. The default
## value is 1e-10. @code{eigs} is passed @code{@var{tol} / sqrt (2)}.
##
## @item maxit
## The maximum number of iterations. The default is 300.
##
## @item disp
## The level of diagnostic printout (0|1|2). If @code{disp} is 0 then
## diagnostics are disabled. The default value is 0.
## @end table
##
## If more than one output is requested then @code{svds} will return an
## approximation of the singular value decomposition of @var{A}
##
## @example
## @var{A}_approx = @var{u}*@var{s}*@var{v}'
## @end example
##
## @noindent
## where @var{A}_approx is a matrix of size @var{A} but only rank @var{k}.
##
## @var{flag} returns 0 if the algorithm has successfully converged, and 1
## otherwise. The test for convergence is
##
## @example
## @group
## norm (@var{A}*@var{v} - @var{u}*@var{s}, 1) <= @var{tol} * norm (@var{A}, 1)
## @end group
## @end example
##
## @code{svds} is best for finding only a few singular values from a large
## sparse matrix. Otherwise, @code{svd (full (@var{A}))} will likely be more
## efficient.
## @seealso{svd, eigs}
## @end deftypefn
function [u, s, v, flag] = svds (A, k, sigma, opts)
persistent root2 = sqrt (2);
if (nargin < 1)
print_usage ();
endif
if (ndims (A) > 2)
error ("svds: A must be a 2-D matrix");
endif
if (nargin < 4)
opts.tol = 0; # use ARPACK default
opts.disp = 0;
opts.maxit = 300;
else
if (! isstruct (opts))
error ("svds: OPTS must be a structure");
endif
if (! isfield (opts, "tol"))
opts.tol = 0; # use ARPACK default
else
opts.tol = opts.tol / root2;
endif
if (isfield (opts, "v0"))
if (! isvector (opts.v0) || (length (opts.v0) != sum (size (A))))
error ("svds: OPTS.v0 must be a vector with rows (A) + columns (A) entries");
endif
endif
endif
if (nargin < 3 || strcmp (sigma, "L"))
if (isreal (A))
sigma = "LA";
else
sigma = "LR";
endif
elseif (isscalar (sigma) && isnumeric (sigma) && isreal (sigma))
if (sigma < 0)
error ("svds: SIGMA must be a positive real value");
endif
else
error ("svds: SIGMA must be a positive real value or the string 'L'");
endif
[m, n] = size (A);
max_a = max (abs (nonzeros (A)));
if (isempty (max_a))
max_a = 0;
endif
## Must initialize variable value, otherwise it may appear to interpreter
## that code is trying to call flag() colormap function.
flag = 0;
if (max_a == 0)
s = zeros (k, 1); # special case of zero matrix
else
if (nargin < 2)
k = min ([6, m, n]);
else
k = min ([k, m, n]);
endif
## Scale everything by the 1-norm to make things more stable.
b = A / max_a;
b_opts = opts;
## Call to eigs is always a symmetric matrix by construction
b_opts.issym = true;
b_sigma = sigma;
if (! ischar (b_sigma))
b_sigma /= max_a;
endif
if (b_sigma == 0)
## Find the smallest eigenvalues
## The eigenvalues returns by eigs for sigma=0 are symmetric about 0.
## As we are only interested in the positive eigenvalues, we have to
## double k and then throw out the k negative eigenvalues.
## Separately, if sigma is nonzero, but smaller than the smallest
## singular value, ARPACK may not return k eigenvalues. However, as
## computation scales with k we'd like to avoid doubling k for all
## scalar values of sigma.
b_k = 2 * k;
else
b_k = k; # Normal case, find just the k largest eigenvalues
endif
if (nargout > 1)
[V, s, flag] = eigs ([sparse(m,m), b; b', sparse(n,n)],
b_k, b_sigma, b_opts);
s = diag (s);
else
s = eigs ([sparse(m,m), b; b', sparse(n,n)], b_k, b_sigma, b_opts);
endif
if (ischar (sigma))
norma = max (s);
else
norma = normest (A);
endif
## We wish to exclude all eigenvalues that are less than zero as these
## are artifacts of the way the matrix passed to eigs is formed. There
## is also the possibility that the value of sigma chosen is exactly
## a singular value, and in that case we're dead!! So have to rely on
## the warning from eigs. We exclude the singular values which are
## less than or equal to zero to within some tolerance scaled by the
## norm since if we don't we might end up with too many singular
## values.
if (b_sigma == 0)
if (sum (s>0) < k)
## It may happen that the number of positive s is less than k.
## In this case, take -s (if s in an eigenvalue, so is -s),
## flipped upside-down.
s = flipud (-s);
endif
endif
tol = norma * opts.tol;
ind = find (s > tol);
if (length (ind) < k)
## Too few eigenvalues returned. Add in any zero eigenvalues of B,
## including the nominally negative ones.
zind = find (abs (s) <= tol);
p = min (length (zind), k - length (ind));
ind = [ind; zind(1:p)];
elseif (length (ind) > k)
## Too many eigenvalues returned. Select according to criterion.
if (b_sigma == 0)
ind = ind(end+1-k:end); # smallest eigenvalues
else
ind = ind(1:k); # largest eigenvalues
endif
endif
s = s(ind);
if (length (s) < k)
warning ("svds: returning fewer singular values than requested");
if (! ischar (sigma))
warning ("svds: try increasing the value of sigma");
endif
endif
s *= max_a;
endif
if (nargout < 2)
u = s;
else
if (max_a == 0)
u = eye (m, k);
s = diag (s);
v = eye (n, k);
else
u = root2 * V(1:m,ind);
s = diag (s);
v = root2 * V(m+1:end,ind);
endif
if (nargout > 3)
flag = (flag != 0);
endif
endif
endfunction
%!shared n, k, A, u, s, v, opts, rand_state, randn_state, tol
%! n = 100;
%! k = 7;
%! A = sparse ([3:n,1:n,1:(n-2)],[1:(n-2),1:n,3:n],[ones(1,n-2),0.4*n*ones(1,n),ones(1,n-2)]);
%! [u,s,v] = svd (full (A));
%! s = diag (s);
%! [~, idx] = sort (abs (s));
%! s = s(idx);
%! u = u(:, idx);
%! v = v(:, idx);
%! rand_state = rand ("state");
%! rand ("state", 42);
%! opts.v0 = rand (2*n,1); # Initialize eigs ARPACK starting vector
%! # to guarantee reproducible results
%!testif HAVE_ARPACK
%! [u2,s2,v2,flag] = svds (A,k);
%! s2 = diag (s2);
%! assert (flag, ! 1);
%! tol = 15 * eps * norm (s2, 1);
%! assert (s2, s(end:-1:end-k+1), tol);
%!testif HAVE_ARPACK, HAVE_UMFPACK
%! [u2,s2,v2,flag] = svds (A,k,0,opts);
%! s2 = diag (s2);
%! assert (flag, ! 1);
%! tol = 15 * eps * norm (s2, 1);
%! assert (s2, s(k:-1:1), tol);
%!testif HAVE_ARPACK, HAVE_UMFPACK
%! idx = floor (n/2);
%! % Don't put sigma right on a singular value or there are convergence issues
%! sigma = 0.99*s(idx) + 0.01*s(idx+1);
%! [u2,s2,v2,flag] = svds (A,k,sigma,opts);
%! s2 = diag (s2);
%! assert (flag, ! 1);
%! tol = 15 * eps * norm (s2, 1);
%! assert (s2, s((idx+floor (k/2)):-1:(idx-floor (k/2))), tol);
%!testif HAVE_ARPACK
%! [u2,s2,v2,flag] = svds (zeros (10), k);
%! assert (u2, eye (10, k));
%! assert (s2, zeros (k));
%! assert (v2, eye (10, 7));
%!
%!testif HAVE_ARPACK
%! s = svds (speye (10));
%! assert (s, ones (6, 1), 8*eps);
%!testif HAVE_ARPACK <57185>
%! z = complex (ones (10), ones (10));
%! s = svds (z);
%! assert (isreal (s));
%!test
%! ## Restore random number generator seed at end of tests
%! rand ("state", rand_state);
|