1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517
|
########################################################################
##
## Copyright (C) 2016-2024 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING. If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################
## -*- texinfo -*-
## @deftypefn {} {@var{x} =} tfqmr (@var{A}, @var{b}, @var{tol}, @var{maxit}, @var{M1}, @var{M2}, @var{x0}, @dots{})
## @deftypefnx {} {@var{x} =} tfqmr (@var{A}, @var{b}, @var{tol}, @var{maxit}, @var{M}, [], @var{x0}, @dots{})
## @deftypefnx {} {[@var{x}, @var{flag}, @var{relres}, @var{iter}, @var{resvec}] =} tfqmr (@var{A}, @var{b}, @dots{})
## Solve @code{A x = b} using the Transpose-Tree qmr method, based on the cgs.
##
## The input parameters are:
##
## @itemize @minus
##
## @item @var{A} is the matrix of the linear system and it must be square.
## @var{A} can be passed as a matrix, function handle, or inline
## function @code{Afcn} such that @code{Afcn(x) = A * x}. Additional
## parameters to @code{Afcn} are passed after @var{x0}.
##
## @item @var{b} is the right hand side vector. It must be a column vector
## with the same number of rows as @var{A}.
##
## @item @var{tol} is the relative tolerance, if not given or set to [] the
## default value 1e-6 is used.
##
## @item @var{maxit} the maximum number of outer iterations, if not given or
## set to [] the default value @code{min (20, numel (b))} is used. To be
## compatible, since the method as different behaviors in the iteration
## number is odd or even, is considered as iteration in @code{tfqmr} the
## entire odd-even cycle. That is, to make an entire iteration, the algorithm
## performs two sub-iterations: the odd one and the even one.
##
## @item @var{M1}, @var{M2} are the preconditioners. The preconditioner
## @var{M} is given as @code{M = M1 * M2}.
## Both @var{M1} and @var{M2} can be passed as a matrix or as a function
## handle or inline function @code{g} such that @code{g(x) = M1 \ x} or
## @code{g(x) = M2 \ x}.
## The technique used is the right-preconditioning, i.e., it is solved
## @code{A*inv(M)*y = b} and then @code{x = inv(M)*y}, instead of
## @code{A x = b}.
##
## @item @var{x0} the initial guess, if not given or set to [] the default
## value @code{zeros (size (b))} is used.
##
## @end itemize
##
## The arguments which follow @var{x0} are treated as parameters, and passed in
## a proper way to any of the functions (@var{A} or @var{M}) which are passed
## to @code{tfqmr}.
##
## The output parameters are:
##
## @itemize @minus
##
## @item @var{x} is the approximation computed. If the method doesn't
## converge then it is the iterated with the minimum residual.
##
## @item @var{flag} indicates the exit status:
##
## @itemize @minus
## @item 0: iteration converged to the within the chosen tolerance
##
## @item 1: the maximum number of iterations was reached before convergence
##
## @item 2: the preconditioner matrix is singular
##
## @item 3: the algorithm reached stagnation
##
## @item 4: the algorithm can't continue due to a division by zero
## @end itemize
##
## @item @var{relres} is the relative residual obtained as
## @code{(@var{A}*@var{x}-@var{b}) / @code{norm (@var{b})}}.
##
## @item @var{iter} is the iteration which @var{x} is
## computed.
##
## @item @var{resvec} is a vector containing the residual at each iteration
## (including @code{norm (b - A x0)}).
## Doing @code{length (@var{resvec}) - 1} is possible to see the
## total number of iterations performed.
##
## @end itemize
##
## Let us consider a trivial problem with a tridiagonal matrix
##
## @example
## @group
## n = 20;
## A = toeplitz (sparse ([1, 1], [1, 2], [2, 1] * n ^ 2, 1, n)) + ...
## toeplitz (sparse (1, 2, -1, 1, n) * n / 2, ...
## sparse (1, 2, 1, 1, n) * n / 2);
## b = A * ones (n, 1);
## restart = 5;
## [M1, M2] = ilu (A); # in this tridiag case it corresponds to chol (A)'
## M = M1 * M2;
## Afcn = @@(x) A * x;
## Mfcn = @@(x) M \ x;
## M1fcn = @@(x) M1 \ x;
## M2fcn = @@(x) M2 \ x;
## @end group
## @end example
##
## @sc{Example 1:} simplest usage of @code{tfqmr}
##
## @example
## x = tfqmr (A, b, [], n)
## @end example
##
## @sc{Example 2:} @code{tfqmr} with a function which computes
## @code{@var{A} * @var{x}}
##
## @example
## x = tfqmr (Afcn, b, [], n)
## @end example
##
## @sc{Example 3:} @code{tfqmr} with a preconditioner matrix @var{M}
##
## @example
## x = tfqmr (A, b, [], 1e-06, n, M)
## @end example
##
## @sc{Example 4:} @code{tfqmr} with a function as preconditioner
##
## @example
## x = tfqmr (Afcn, b, 1e-6, n, Mfcn)
## @end example
##
## @sc{Example 5:} @code{tfqmr} with preconditioner matrices @var{M1}
## and @var{M2}
##
## @example
## x = tfqmr (A, b, [], 1e-6, n, M1, M2)
## @end example
##
## @sc{Example 6:} @code{tfmqr} with functions as preconditioners
##
## @example
## x = tfqmr (Afcn, b, 1e-6, n, M1fcn, M2fcn)
## @end example
##
## @sc{Example 7:} @code{tfqmr} with as input a function requiring an argument
##
## @example
## @group
## function y = Ap (A, x, z) # compute A^z * x
## y = x;
## for i = 1:z
## y = A * y;
## endfor
## endfunction
## Apfcn = @@(x, string, p) Ap (A, x, string, p);
## x = tfqmr (Apfcn, b, [], [], [], [], [], 2);
## @end group
## @end example
##
## @sc{Example 8:} explicit example to show that @code{tfqmr} uses a
## right preconditioner
##
## @example
## @group
## [M1, M2] = ilu (A + 0.3 * eye (n)); # factorization of A perturbed
## M = M1 * M2;
##
## ## reference solution computed by tfqmr after one iteration
## [x_ref, fl] = tfqmr (A, b, [], 1, M)
##
## ## right preconditioning
## [y, fl] = tfqmr (A / M, b, [], 1)
## x = M \ y # compare x and x_ref
##
## @end group
## @end example
##
## Reference:
##
## @nospell{Y. Saad}, @cite{Iterative Methods for Sparse Linear Systems},
## Second edition, 2003, SIAM
##
## @seealso{bicg, bicgstab, cgs, gmres, pcg, qmr, pcr}
##
## @end deftypefn
function [x_min, flag, relres, iter_min, resvec] = ...
tfqmr (A, b, tol = [], maxit = [], M1 = [], M2 = [], ...
x0 = [], varargin)
[Afcn, M1fcn, M2fcn] = __alltohandles__ (A, b, M1, M2, "tfqmr");
[tol, maxit, x0] = __default__input__ ({1e-06, 2 * min(20, rows (b)), ...
zeros(rows (b), 1)}, tol, ...
maxit, x0);
maxit = 2 * maxit; # To be compatible, since iteration = odd+even ones
norm_b = norm (b, 2);
if (norm_b == 0)
if (nargout < 2)
printf ("The right hand side vector is all zero so tfqmr \n")
printf ("returned an all zero solution without iterating.\n")
endif
x_min = zeros (numel (b), 1);
iter_min = 0;
flag = 0;
resvec = 0;
relres = 0;
return;
endif
x = x_pr = x_min = x0;
iter = iter_min = m = 0;
resvec = zeros (maxit, 1);
flag = 1;
w = u = r = r_star = b - feval (Afcn, x0, varargin{:});
rho_1 = (r_star' * r);
d = 0;
tau = norm (r, 2);
theta = eta = 0;
resvec (1, 1) = norm (r, 2);
it = 1;
try
warning ("error", "Octave:singular-matrix", "local");
u_hat = feval (M1fcn, u, varargin{:});
u_hat = feval (M2fcn, u_hat, varargin{:});
v = feval (Afcn, u_hat, varargin{:});
catch
flag = 2;
end_try_catch
while ((flag != 2) && (iter < maxit) && ...
(resvec (iter + 1, 1) >= norm_b * tol))
if (it > 0) # iter is even
v_r = r_star' * v; # inner prod between r_star and v
if (v_r == 0)
## Essentially the next iteration doesn't change x,
## and the iter after this will have a division by zero
flag = 4;
break;
endif
alpha = rho_1 / v_r;
u_1 = u - alpha * v; # u at the after iteration
endif
u_hat = feval (M1fcn, u, varargin{:});
u_hat = feval (M2fcn, u_hat, varargin{:});
w -= alpha * feval (Afcn, u_hat, varargin{:});
d = u_hat + ((theta * theta) / alpha) * eta * d;
theta = norm (w, 2) / tau;
c = 1 / sqrt (1 + theta * theta);
tau *= theta * c;
eta = (c * c) * alpha;
x += eta * d;
r -= eta * feval (Afcn, d, varargin{:});
if (it < 0) # iter is odd
rho_2 = rho_1;
rho_1 = (r_star' * w);
if (rho_1 == 0)
## Essentially the next iteration doesn't change x,
## and the iter after this will have a division by zero
flag = 4;
break;
endif
beta = rho_1 / rho_2;
u_1 = w + beta * u; # u at the after iteration
u1_hat = feval (M1fcn, u_1, varargin{:});
u1_hat = feval (M2fcn, u1_hat, varargin{:});
v = feval (Afcn, u1_hat, varargin{:}) + ...
beta * (feval (Afcn, u_hat, varargin{:}) + beta * v);
endif
u = u_1;
iter += 1;
resvec (iter + 1, 1) = norm (r, 2);
if (resvec (iter + 1, 1) <= resvec (iter_min + 1, 1))
## iter with min residual
x_min = x;
iter_min = iter;
endif
if (norm (x_pr - x) <= norm (x) * eps)
flag = 3; # Stagnation
break;
endif
x_pr = x;
it = -it;
endwhile
resvec = resvec (1: (iter + 1));
relres = resvec (iter_min + 1) / norm (b);
iter_min = floor (iter_min / 2); # compatibility, since it
# makes two times the effective iterations
if (relres <= tol)
flag = 0;
endif
if (nargout < 2) # Output strings
switch (flag)
case {0}
printf ("tfqmr converged at iteration %i ", iter_min);
printf ("to a solution with relative residual %e\n", relres);
case {1}
printf ("tfqmr stopped at iteration %i ", iter);
printf ("without converging to the desired tolerance %e\n", tol);
printf ("because the maximum number of iterations was reached.\n");
printf ("The iterate returned (number %i) ", iter_min);
printf ("has relative residual %e\n", relres);
case {2}
printf ("tfqmr stopped at iteration %i ", iter);
printf ("without converging to the desired tolerance %e\n", tol);
printf ("because the preconditioner matrix is singular.\n");
printf ("The iterate returned (number %i) ", iter_min);
printf ("has relative residual %e\n", relres);
case {3}
printf ("tfqmr stopped at iteration %i ", iter);
printf ("without converging to the desired tolerance %e\n", tol);
printf ("because the method stagnated.\n");
printf ("The iterate returned (number %i) ", iter_min);
printf ("has relative residual %e\n", relres);
case {4}
printf ("tfqmr stopped at iteration %i ", iter);
printf ("without converging to the desired tolerance %e\n", tol);
printf ("because the method can't continue.\n");
printf ("The iterate returned (number %i) ", iter_min);
printf ("has relative residual %e\n", relres);
endswitch
endif
endfunction
%!test
%! ## Check that all type of inputs work
%! A = toeplitz (sparse ([2, 1, 0, 0, 0]), sparse ([2, -1, 0, 0, 0]));
%! b = sum (A, 2);
%! M1 = diag (sqrt (diag (A)));
%! M2 = M1;
%! maxit = 10;
%! Afcn = @(z) A * z;
%! M1_fcn = @(z) M1 \ z;
%! M2_fcn = @(z) M2 \ z;
%! [x, flag] = tfqmr (A,b);
%! assert (flag, 0);
%! [x, flag] = tfqmr (A, b, [], maxit, M1, M2);
%! assert (flag, 0);
%! [x, flag] = tfqmr (A, b, [], maxit, M1_fcn, M2_fcn);
%! assert (flag, 0);
%! [x, flag] = tfqmr (A, b, [], maxit, M1_fcn, M2);
%! assert (flag, 0);
%! [x, flag] = tfqmr (A, b, [], maxit, M1, M2_fcn);
%! assert (flag, 0);
%! [x, flag] = tfqmr (Afcn, b);
%! assert (flag, 0);
%! [x, flag] = tfqmr (Afcn, b, [], maxit, M1, M2);
%! assert (flag, 0);
%! [x, flag] = tfqmr (Afcn, b, [], maxit, M1_fcn, M2);
%! assert (flag, 0);
%! [x, flag] = tfqmr (Afcn, b, [], maxit, M1, M2_fcn);
%! assert (flag, 0);
%! [x, flag] = tfqmr (Afcn, b, [], maxit, M1_fcn, M2_fcn);
%! assert (flag, 0);
%!shared A, b, n, M1, M2
%!
%!test
%! n = 100;
%! A = spdiags ([-2*ones(n,1) 4*ones(n,1) -ones(n,1)], -1:1, n, n);
%! b = sum (A, 2);
%! tol = 1e-8;
%! maxit = 15;
%! M1 = spdiags ([ones(n,1)/(-2) ones(n,1)],-1:0, n, n);
%! M2 = spdiags ([4*ones(n,1) -ones(n,1)], 0:1, n, n);
%! [x, flag, relres, iter, resvec] = tfqmr (A, b, tol, maxit, M1, M2);
%! assert (x, ones (size (b)), 1e-7);
%!
%!test
%!function y = afcn (x, a)
%! y = a * x;
%!endfunction
%!
%! tol = 1e-8;
%! maxit = 15;
%!
%! [x, flag, relres, iter, resvec] = tfqmr (@(x) afcn (x, A), b,
%! tol, maxit, M1, M2);
%! assert (x, ones (size (b)), 1e-7);
%!test
%! ## Jacobi preconditioner works
%! n = 10;
%! tol = 1e-8;
%! A = hilb (n) + 1i * hilb (n);
%! A(1,1) = 100;
%! A(n, n) = 100;
%! b = sum (A, 2);
%! [x, flag, relres, iter, resvec] = tfqmr (A, b, tol);
%! assert (x, ones (size (b)), 0.005);
%! assert (iter, 8);
%! [x, flag, relres, iter, resvec] = tfqmr (A, b, tol, [], diag (diag (A)));
%! assert (x, ones (size (b)), 0.002);
%! assert (iter, 6);
%!test
%! ## Solve complex linear system
%! A = [1 + 1i, 1 + 1i; 2 - 1i, 2 + 1i];
%! b = A * [1; 1];
%! [x, flag, relres, iter, resvec] = tfqmr (A, b, [], 3);
%! assert (x, [1; 1], 1e-6);
%!test
%! A = diag (1:50);
%! A (1,50) = 10000;
%! b = ones (50,1);
%! [x, flag, relres, iter, resvec] = tfqmr (A, b, [], 100);
%! assert (flag, 0);
%! assert (x, A \ b, 1e-05);
%! ## Detects a singular preconditioner
%! M = ones (50);
%! M(1, 1) = 0;
%! [x, flag] = tfqmr (A, b, [], 100, M);
%! assert (flag, 2);
%!test
%! A = single (1);
%! b = 1;
%! [x, flag] = tfqmr (A, b);
%! assert (class (x), "single");
%!test
%! A = 1;
%! b = single (1);
%! [x, flag] = tfqmr (A, b);
%! assert (class (x), "single");
%!test
%! A = single (1);
%! b = single (1);
%! [x, flag] = tfqmr (A, b);
%! assert (class (x), "single");
%!test
%!function y = Afcn (x)
%! A = toeplitz ([2, 1, 0, 0], [2, -1, 0, 0]);
%! y = A * x;
%!endfunction
%! [x, flag] = tfqmr ("Afcn", [1; 2; 2; 3]);
%! assert (x, ones (4, 1), 1e-6);
%!test # unpreconditioned residual
%! A = toeplitz (sparse ([2, 1, 0, 0, 0]), sparse ([2, -1, 0, 0, 0]));
%! b = sum (A, 2);
%! M = magic (5);
%! [x, flag, relres] = tfqmr (A, b, [], 3, M);
%! assert (relres, norm (b - A * x) / norm (b), 8 * eps);
%!demo # simplest use
%! n = 20;
%! A = toeplitz (sparse ([1, 1], [1, 2], [2, 1] * n ^ 2, 1, n)) + ...
%! toeplitz (sparse (1, 2, -1, 1, n) * n / 2, ...
%! sparse (1, 2, 1, 1, n) * n / 2);
%! b = A * ones (n, 1);
%! [M1, M2] = ilu (A + 0.1 * eye (n));
%! M = M1 * M2;
%! x = tfqmr (A, b, [], n);
%! Afcn = @(x) A * x;
%! x = tfqmr (Afcn, b, [], n);
%! x = tfqmr (A, b, 1e-6, n, M);
%! x = tfqmr (A, b, 1e-6, n, M1, M2);
%! Mfcn = @(z) M \ z;
%! x = tfqmr (Afcn, b, 1e-6, n, Mfcn);
%! M1fcn = @(z) M1 \ z;
%! M2fcn = @(z) M2 \ z;
%! x = tfqmr (Afcn, b, 1e-6, n, M1fcn, M2fcn);
%! function y = Ap (A, x, z) # compute A^z * x or (A^z)' * x
%! y = x;
%! for i = 1:z
%! y = A * y;
%! endfor
%! endfunction
%! Afcn = @(x, p) Ap (A, x, p);
%! x = tfqmr (Afcn, b, [], 2*n, [], [], [], 2); # solution of A^2 * x = b
%!demo
%! n = 10;
%! A = toeplitz (sparse ([1, 1], [1, 2], [2, 1] * n ^ 2, 1, n)) + ...
%! toeplitz (sparse (1, 2, -1, 1, n) * n / 2, ...
%! sparse (1, 2, 1, 1, n) * n / 2);
%! b = A * ones (n, 1);
%! [M1, M2] = ilu (A + 0.3 * eye (n)); # factorization of A perturbed
%! M = M1 * M2;
%!
%! ## reference solution computed by tfqmr after one iteration
%! [x_ref, fl] = tfqmr (A, b, [], 1, M);
%! x_ref
%!
%! ## right preconditioning
%! [y, fl] = tfqmr (A / M, b, [], 1);
%! x = M \ y # compare x and x_ref
|