1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
|
########################################################################
##
## Copyright (C) 2008-2024 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING. If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################
## -*- texinfo -*-
## @deftypefn {} {[@var{x}, @var{y}] =} treelayout (@var{tree})
## @deftypefnx {} {[@var{x}, @var{y}] =} treelayout (@var{tree}, @var{permutation})
## @deftypefnx {} {[@var{x}, @var{y}, @var{h}, @var{s}] =} treelayout (@dots{})
## treelayout lays out a tree or a forest.
##
## The first argument @var{tree} is a vector of predecessors.
##
## The optional parameter @var{permutation} is a postorder permutation.
##
## The complexity of the algorithm is O(n) in terms of time and memory
## requirements.
## @seealso{etreeplot, gplot, treeplot}
## @end deftypefn
function [x, y, h, s] = treelayout (tree, permutation)
if (nargin < 1)
print_usage ();
elseif (! isvector (tree) || rows (tree) != 1 || ! isnumeric (tree)
|| any (tree > length (tree)) || any (tree < 0))
error ("treelayout: the first input argument must be a vector of predecessors");
endif
## Make it a row vector.
tree = tree(:)';
## The count of nodes of the graph.
num_nodes = length (tree);
## The number of children.
num_children = zeros (1, num_nodes + 1);
## Checking vector of predecessors.
for i = 1 : num_nodes
if (tree(i) < i)
## This part of graph was checked before.
continue;
endif
## Try to find cicle in this part of graph using modified Floyd's
## cycle-finding algorithm.
tortoise = tree(i);
hare = tree(tortoise);
while (tortoise != hare)
## End after finding a cicle or reaching a checked part of graph.
if (hare < i)
## This part of graph was checked before.
break;
endif
tortoise = tree(tortoise);
## Hare will move faster than tortoise so in cicle hare must
## reach tortoise.
hare = tree(tree(hare));
endwhile
if (tortoise == hare)
## If hare reach tortoise we found circle.
error ("treelayout: vector of predecessors has bad format");
endif
endfor
## Vector of predecessors has right format.
for i = 1:num_nodes
## vec_of_child is helping vector which is used to speed up the
## choice of descendant nodes.
num_children(tree(i)+1) = num_children(tree(i)+1) + 1;
endfor
pos = 1;
start = zeros (1, num_nodes+1);
xhelp = zeros (1, num_nodes+1);
stop = zeros (1, num_nodes+1);
for i = 1 : num_nodes + 1
start(i) = pos;
xhelp(i) = pos;
pos += num_children(i);
stop(i) = pos;
endfor
if (nargin == 1)
for i = 1:num_nodes
vec_of_child(xhelp(tree(i)+1)) = i;
xhelp(tree(i)+1) = xhelp(tree(i)+1) + 1;
endfor
else
vec_of_child = permutation;
endif
## The number of "parent" (actual) node (its descendants will be
## browse in the next iteration).
par_number = 0;
## The x-coordinate of the left most descendant of "parent node"
## this value is increased in each leaf.
left_most = 0;
## The level of "parent" node (root level is num_nodes).
level = num_nodes;
## num_nodes - max_ht is the height of this graph.
max_ht = num_nodes;
## Main stack - each item consists of two numbers - the number of
## node and the number it's of parent node on the top of stack
## there is "parent node".
stk = [-1, 0];
## Number of vertices s in the top-level separator.
s = 0;
## Flag which says if we are in top level separator.
top_level = 1;
## The top of the stack.
while (par_number != -1)
if (start(par_number+1) < stop(par_number+1))
idx = vec_of_child(start(par_number+1) : stop(par_number+1) - 1);
else
idx = zeros (1, 0);
endif
## Add to idx the vector of parent descendants.
stk = [stk; [idx', ones(fliplr(size(idx))) * par_number]];
## We are in top level separator when we have one child and the
## flag is 1
if (columns (idx) == 1 && top_level == 1)
s += 1;
else
## We aren't in top level separator now.
top_level = 0;
endif
## If there is not any descendant of "parent node":
if (stk(end,2) != par_number)
left_most += 1;
x_r(par_number) = left_most;
max_ht = min (max_ht, level);
if (length (stk) > 1 && find ((circshift (stk,1) - stk) == 0) > 1
&& stk(end,2) != stk(end-1,2))
## Return to the nearest branching the position to return
## position is the position on the stack, where should be
## started further search (there are two nodes which has the
## same parent node).
position = (find ((circshift (stk(:,2), 1) - stk(:,2)) == 0))(end) + 1;
par_number_vec = stk(position:end,2);
## The vector of removed nodes (the content of stack form
## position to end).
level += length (par_number_vec);
## The level have to be decreased.
x_r(par_number_vec) = left_most;
stk(position:end,:) = [];
endif
## Remove the next node from "searched branch".
stk(end,:) = [];
## Choose new "parent node".
par_number = stk(end,1);
## If there is another branch start to search it.
if (par_number != -1)
y(par_number) = level;
x_l(par_number) = left_most + 1;
endif
else
## There were descendants of "parent nod" choose the last of
## them and go on through it.
level -= 1;
par_number = stk(end,1);
y(par_number) = level;
x_l(par_number) = left_most + 1;
endif
endwhile
## Calculate the x coordinates (the known values are the position
## of most left and most right descendants).
x = (x_l + x_r) / 2;
h = num_nodes - max_ht - 1;
endfunction
%!test
%! % Compute a simple tree layout
%! [x, y, h, s] = treelayout ([0, 1, 2, 2]);
%! assert (x, [1.5, 1.5, 2, 1]);
%! assert (y, [3, 2, 1, 1]);
%! assert (h, 2);
%! assert (s, 2);
%!test
%! % Compute a simple tree layout with defined postorder permutation
%! [x, y, h, s] = treelayout ([0, 1, 2, 2], [1, 2, 4, 3]);
%! assert (x, [1.5, 1.5, 1, 2]);
%! assert (y, [3, 2, 1, 1]);
%! assert (h, 2);
%! assert (s, 2);
%!test
%! % Compute a simple tree layout with defined postorder permutation
%! [x, y, h, s] = treelayout ([0, 1, 2, 2], [4, 2, 3, 1]);
%! assert (x, [0, 0, 0, 1]);
%! assert (y, [0, 0, 0, 3]);
%! assert (h, 0);
%! assert (s, 1);
|