File: betaincinv.m

package info (click to toggle)
octave 9.4.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 144,300 kB
  • sloc: cpp: 332,784; ansic: 77,239; fortran: 20,963; objc: 9,396; sh: 8,213; yacc: 4,925; lex: 4,389; perl: 1,544; java: 1,366; awk: 1,259; makefile: 648; xml: 189
file content (321 lines) | stat: -rw-r--r-- 10,648 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
########################################################################
##
## Copyright (C) 2017-2024 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################

## -*- texinfo -*-
## @deftypefn  {} {@var{x} =} betaincinv (@var{y}, @var{a}, @var{b})
## @deftypefnx {} {@var{x} =} betaincinv (@var{y}, @var{a}, @var{b}, "lower")
## @deftypefnx {} {@var{x} =} betaincinv (@var{y}, @var{a}, @var{b}, "upper")
## Compute the inverse of the normalized incomplete beta function.
##
## The normalized incomplete beta function is defined as
## @tex
## $$
##  I_x (a, b) = {1 \over {B(a,b)}} \displaystyle{\int_0^x t^{a-1} (1-t)^{b-1} dt}
## $$
## @end tex
## @ifnottex
##
## @example
## @group
##                           x
##                          /
##                  1       |
## I_x (a, b) = ----------  | t^(a-1) (1-t)^(b-1) dt
##              beta (a,b)  |
##                          /
##                         0
## @end group
## @end example
##
## @end ifnottex
##
## If two inputs are scalar, then @code{betaincinv (@var{y}, @var{a}, @var{b})}
## is returned for each of the other inputs.
##
## If two or more inputs are not scalar, the sizes of them must agree, and
## @code{betaincinv} is applied element-by-element.
##
## The variable @var{y} must be in the interval [0,1], while @var{a} and
## @var{b} must be real and strictly positive.
##
## By default, @var{tail} is @qcode{"lower"} and the inverse of the incomplete
## beta function integrated from 0 to @var{x} is computed.  If @var{tail} is
## @qcode{"upper"} then the complementary function integrated from @var{x} to 1
## is inverted.
##
## The function is computed by standard Newton's method, by solving
## @tex
## $$
##  y - I_x (a, b) = 0
## $$
## @end tex
## @ifnottex
##
## @example
## @var{y} - betainc (@var{x}, @var{a}, @var{b}) = 0
## @end example
##
## @end ifnottex
##
## @seealso{betainc, beta, betaln}
## @end deftypefn

function x = betaincinv (y, a, b, tail = "lower")

  if (nargin < 3)
    print_usage ();
  endif

  [err, y, a, b] = common_size (y, a, b);
  if (err > 0)
    error ("betaincinv: Y, A, and B must be of common size or scalars");
  endif

  if (! (isfloat (y) && isfloat (a) && isfloat (b)
         && isreal (y) && isreal (a) && isreal (b)))
    error ("betaincinv: Y, A, and B must be real, floating point values");
  endif

  ## Remember original shape of data, but convert to column vector for calcs.
  orig_sz = size (y);
  y = y(:);
  a = a(:);
  b = b(:);

  if (any ((y < 0) | (y > 1)))
    error ("betaincinv: Y must be in the range [0, 1]");
  endif

  if (any (a <= 0))
    error ("betaincinv: A must be strictly positive");
  endif

  if (any (b <= 0))
    error ("betaincinv: B must be strictly positive");
  endif

  ## If any of the arguments is single then the output should be as well.
  if (isa (y, "single") || isa (a, "single") || isa (b, "single"))
    y = single (y);
    a = single (a);
    b = single (b);
  endif

  if (strcmpi (tail, "lower"))
    ys = y;
  elseif (strcmpi (tail, "upper"))
    ys = 1 - y;  # only for computation of initial points, no loss of accuracy
  else
    error ("betaincinv: invalid value for TAIL");
  endif

  ## Choose starting point for Newton's Method to guarantee convergence.
  ## If (a-1)*(b-1) > 0, F has a point of inflection at x = (a-1)/(a+b-2).
  ## In this case, it is convex on (0,x) and concave on (x,1) if a>1; otherwise
  ## it is the other way round.  If (a-1)*(b-1) <= 0, there is no point of
  ## inflection, and it is everywhere convex for a>1 and concave otherwise.
  ## We thus choose our starting x for the Newton iterations so that we stay
  ## within a region of constant sign of curvature and on the correct side of
  ## the eventual solution, guaranteeing convergence.  Curvatures above are to
  ## be understood under the condition tail=="lower".

  ## Initialize output array
  x = x_i = y_i = zeros (size (y), class (y));

  ## Have point of inflection
  idx = find ((a - 1) .* (b - 1) > 0);
  if (! isempty (idx))
    x_i(idx) = (a(idx) - 1) ./ (a(idx) + b(idx) - 2);
    y_i(idx) = betainc (x_i(idx), a(idx), b(idx));
  endif

  ## Converge outwards
  tmpidx = find (a(idx) > 1);
  if (! isempty (tmpidx))
    x(idx(tmpidx)) = x_i(idx(tmpidx));
  endif
  ## Converge inwards
  ## To the left of inflection point
  tmpidx = idx(find ((a(idx) <= 1) & (y_i(idx) >= ys(idx))));
  if (! isempty (tmpidx))
    x(tmpidx) = (ys(tmpidx) ./ y_i(tmpidx)).^(1 ./ a(tmpidx)) .* x_i(tmpidx);
  endif
  ## To the right of inflection point
  tmpidx = idx(find ((a(idx) <= 1) & (y_i(idx) < ys(idx))));
  if (! isempty (tmpidx))
    x(tmpidx) = 1 - ...
                ((1 - ys(tmpidx)) ./ (1 - y_i(tmpidx))).^(1 ./ b(tmpidx)) ...
                .* (1 - x_i(tmpidx));
  endif

  ## Have no point of inflection
  idx = find ((a - 1) .* (b - 1) <= 0);

  ## Negative curvature
  tmpidx = idx(find (a(idx) < 1));
  if (! isempty (tmpidx))
    x(tmpidx) = (ys(tmpidx) .* beta (a(tmpidx), b(tmpidx)) .* a(tmpidx)) ...
                .^ (1 ./ a(tmpidx));
  endif
  ## Positive curvature
  tmpidx = idx(find (a(idx) >= 1));
  if (! isempty (tmpidx))
    x(tmpidx) = 1 - ...
                ((1 - ys(tmpidx)) .* beta (a(tmpidx), b(tmpidx)) .* b(tmpidx)) ...
                .^ (1 ./ b(tmpidx));
  endif

  ## Cleanup memory before continuing
  clear ys x_i y_i idx tmpidx

  if (strcmpi (tail, "lower"))
    x(y == 0) = 0;
    x(y == 1) = 1;
    F = @(x, a, b, y) y - betainc (x, a, b);
    JF = @(x, a, b, Bln) -exp ((a-1) .* log (x) + (b-1) .* log1p (-x) - Bln);
  else
    x(y == 0) = 1;
    x(y == 1) = 0;
    F = @(x, a, b, y) y - betainc (x, a, b, "upper");
    JF = @(x, a, b, Bln) exp ((a-1) .* log (x) + (b-1) .* log1p (-x) - Bln);
  endif

  x = newton_method (F, JF, x, a, b, y);

  ## Restore original shape
  x = reshape (x, orig_sz);

endfunction

function x = newton_method (F, JF, x, a, b, y)

  Bln = betaln (a, b);
  ## Exclude special values that have been already computed.
  todo = find ((y != 0) & (y != 1));
  step = -F (x(todo), a(todo), b(todo), y(todo)) ./ ...
         JF (x(todo), a(todo), b(todo), Bln(todo));
  x_old = x(todo);
  x(todo) += step;
  dx = x(todo) - x_old;
  idx = (dx != 0);
  todo = todo(idx);
  dx_old = dx(idx);
  while (! isempty (todo))
    step = -F (x(todo), a(todo), b(todo), y(todo)) ./ ...
           JF (x(todo), a(todo), b(todo), Bln(todo));
    x_old = x(todo);
    x(todo) += step;
    dx = x(todo) - x_old;
    idx = (abs (dx) < abs (dx_old));  # Converging if dx is getting smaller
    todo = todo(idx);
    dx_old = dx(idx);
  endwhile

endfunction


%!test
%! x = linspace (0.1, 0.9, 11);
%! a = [2, 3, 4];
%! [x,a,b] = ndgrid (x,a,a);
%! xx = betaincinv (betainc (x, a, b), a, b);
%! assert (xx, x, 3e-15);

%!test
%! x = linspace (0.1, 0.9, 11);
%! a = [2, 3, 4];
%! [x,a,b] = ndgrid (x,a,a);
%! xx = betaincinv (betainc (x, a, b, "upper"), a, b, "upper");
%! assert (xx, x, 3e-15);

%!test
%! x = linspace (0.1, 0.9, 11);
%! a = [0.1:0.1:1];
%! [x,a,b] = ndgrid (x,a,a);
%! xx = betaincinv (betainc (x, a, b), a, b);
%! assert (xx, x, 5e-15);

%!test
%! x = linspace (0.1, 0.9, 11);
%! a = [0.1:0.1:1];
%! [x,a,b] = ndgrid (x,a,a);
%! xx = betaincinv (betainc (x, a, b, "upper"), a, b, "upper");
%! assert (xx, x, 24*eps);

## Test the conservation of the input class
%!assert (class (betaincinv (0.5, 1, 1)), "double")
%!assert (class (betaincinv (single (0.5), 1, 1)), "single")
%!assert (class (betaincinv (0.5, single (1), 1)), "single")
%!assert (class (betaincinv (0.5, 1, single (1))), "single")

## Extreme values for y, a, b that really test the algorithm
%!assert (betaincinv ([0, 1], 1, 3), [0, 1])
%!assert <*60528> (betaincinv (1e-6, 1, 3), 3.3333344444450617e-7, 2*eps)
%!assert <*60528> (betaincinv (1-1e-6, 3, 1), 0.9999996666665555, 2*eps)
%!assert (betainc (betaincinv (0.9, 1e-3, 1), 1e-3, 1), 0.9, 2*eps)
%!assert (betainc (betaincinv (.01, 1, 1e-3), 1, 1e-3), .01, 6*eps)
%!assert (betainc (betaincinv (0.5, 100, 1), 100, 1), 0.5, 8*eps)
%!assert (betainc (betaincinv (0.5, 1, 100), 1, 100), 0.5, 22*eps)
%!assert (betaincinv ([0, 1], 1, 3, "upper"), [1, 0])
%!assert <*60528> (betaincinv (1e-6, 1, 3, "upper"), 0.99, 2*eps)
%!assert <*60528> (betaincinv (1-1e-6, 3, 1,"upper"), .01, 250*eps)
%!assert (betainc (betaincinv (0.1, 1e-3, 1, "upper"), 1e-3, 1, "upper"),
%!        0.1, 2*eps)
%!assert (betainc (betaincinv (.99, 1, 1e-3, "upper"), 1, 1e-3, "upper"),
%!        .99, 6*eps)
%!assert (betainc (betaincinv (0.5, 100, 1, "upper"), 100, 1, "upper"),
%!        0.5, 8*eps)
%!assert (betainc (betaincinv (0.5, 1, 100, "upper"), 1, 100, "upper"),
%!        0.5, 22*eps)

## Test input validation
%!error <Invalid call> betaincinv ()
%!error <Invalid call> betaincinv (1)
%!error <Invalid call> betaincinv (1,2)
%!error <must be of common size or scalars>
%! betaincinv (ones (2,2), ones (1,2), 1);
%!error <must be .* floating point> betaincinv ('a', 1, 2)
%!error <must be .* floating point> betaincinv (0, int8 (1), 1)
%!error <must be .* floating point> betaincinv (0, 1, true)
%!error <must be real> betaincinv (0.5i, 1, 2)
%!error <must be real> betaincinv (0, 1i, 1)
%!error <must be real> betaincinv (0, 1, 1i)
%!error <Y must be in the range \[0, 1\]> betaincinv (-0.1,1,1)
%!error <Y must be in the range \[0, 1\]> betaincinv (1.1,1,1)
%!error <Y must be in the range \[0, 1\]>
%! y = ones (1, 1, 2);
%! y(1,1,2) = -1;
%! betaincinv (y,1,1);
%!error <A must be strictly positive> betaincinv (0.5,0,1)
%!error <A must be strictly positive>
%! a = ones (1, 1, 2);
%! a(1,1,2) = 0;
%! betaincinv (1,a,1);
%!error <B must be strictly positive> betaincinv (0.5,1,0)
%!error <B must be strictly positive>
%! b = ones (1, 1, 2);
%! b(1,1,2) = 0;
%! betaincinv (1,1,b);
%!error <invalid value for TAIL> betaincinv (1,2,3, "foobar")