1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
|
########################################################################
##
## Copyright (C) 2017-2024 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING. If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################
## -*- texinfo -*-
## @deftypefn {} {@var{x} =} betaincinv (@var{y}, @var{a}, @var{b})
## @deftypefnx {} {@var{x} =} betaincinv (@var{y}, @var{a}, @var{b}, "lower")
## @deftypefnx {} {@var{x} =} betaincinv (@var{y}, @var{a}, @var{b}, "upper")
## Compute the inverse of the normalized incomplete beta function.
##
## The normalized incomplete beta function is defined as
## @tex
## $$
## I_x (a, b) = {1 \over {B(a,b)}} \displaystyle{\int_0^x t^{a-1} (1-t)^{b-1} dt}
## $$
## @end tex
## @ifnottex
##
## @example
## @group
## x
## /
## 1 |
## I_x (a, b) = ---------- | t^(a-1) (1-t)^(b-1) dt
## beta (a,b) |
## /
## 0
## @end group
## @end example
##
## @end ifnottex
##
## If two inputs are scalar, then @code{betaincinv (@var{y}, @var{a}, @var{b})}
## is returned for each of the other inputs.
##
## If two or more inputs are not scalar, the sizes of them must agree, and
## @code{betaincinv} is applied element-by-element.
##
## The variable @var{y} must be in the interval [0,1], while @var{a} and
## @var{b} must be real and strictly positive.
##
## By default, @var{tail} is @qcode{"lower"} and the inverse of the incomplete
## beta function integrated from 0 to @var{x} is computed. If @var{tail} is
## @qcode{"upper"} then the complementary function integrated from @var{x} to 1
## is inverted.
##
## The function is computed by standard Newton's method, by solving
## @tex
## $$
## y - I_x (a, b) = 0
## $$
## @end tex
## @ifnottex
##
## @example
## @var{y} - betainc (@var{x}, @var{a}, @var{b}) = 0
## @end example
##
## @end ifnottex
##
## @seealso{betainc, beta, betaln}
## @end deftypefn
function x = betaincinv (y, a, b, tail = "lower")
if (nargin < 3)
print_usage ();
endif
[err, y, a, b] = common_size (y, a, b);
if (err > 0)
error ("betaincinv: Y, A, and B must be of common size or scalars");
endif
if (! (isfloat (y) && isfloat (a) && isfloat (b)
&& isreal (y) && isreal (a) && isreal (b)))
error ("betaincinv: Y, A, and B must be real, floating point values");
endif
## Remember original shape of data, but convert to column vector for calcs.
orig_sz = size (y);
y = y(:);
a = a(:);
b = b(:);
if (any ((y < 0) | (y > 1)))
error ("betaincinv: Y must be in the range [0, 1]");
endif
if (any (a <= 0))
error ("betaincinv: A must be strictly positive");
endif
if (any (b <= 0))
error ("betaincinv: B must be strictly positive");
endif
## If any of the arguments is single then the output should be as well.
if (isa (y, "single") || isa (a, "single") || isa (b, "single"))
y = single (y);
a = single (a);
b = single (b);
endif
if (strcmpi (tail, "lower"))
ys = y;
elseif (strcmpi (tail, "upper"))
ys = 1 - y; # only for computation of initial points, no loss of accuracy
else
error ("betaincinv: invalid value for TAIL");
endif
## Choose starting point for Newton's Method to guarantee convergence.
## If (a-1)*(b-1) > 0, F has a point of inflection at x = (a-1)/(a+b-2).
## In this case, it is convex on (0,x) and concave on (x,1) if a>1; otherwise
## it is the other way round. If (a-1)*(b-1) <= 0, there is no point of
## inflection, and it is everywhere convex for a>1 and concave otherwise.
## We thus choose our starting x for the Newton iterations so that we stay
## within a region of constant sign of curvature and on the correct side of
## the eventual solution, guaranteeing convergence. Curvatures above are to
## be understood under the condition tail=="lower".
## Initialize output array
x = x_i = y_i = zeros (size (y), class (y));
## Have point of inflection
idx = find ((a - 1) .* (b - 1) > 0);
if (! isempty (idx))
x_i(idx) = (a(idx) - 1) ./ (a(idx) + b(idx) - 2);
y_i(idx) = betainc (x_i(idx), a(idx), b(idx));
endif
## Converge outwards
tmpidx = find (a(idx) > 1);
if (! isempty (tmpidx))
x(idx(tmpidx)) = x_i(idx(tmpidx));
endif
## Converge inwards
## To the left of inflection point
tmpidx = idx(find ((a(idx) <= 1) & (y_i(idx) >= ys(idx))));
if (! isempty (tmpidx))
x(tmpidx) = (ys(tmpidx) ./ y_i(tmpidx)).^(1 ./ a(tmpidx)) .* x_i(tmpidx);
endif
## To the right of inflection point
tmpidx = idx(find ((a(idx) <= 1) & (y_i(idx) < ys(idx))));
if (! isempty (tmpidx))
x(tmpidx) = 1 - ...
((1 - ys(tmpidx)) ./ (1 - y_i(tmpidx))).^(1 ./ b(tmpidx)) ...
.* (1 - x_i(tmpidx));
endif
## Have no point of inflection
idx = find ((a - 1) .* (b - 1) <= 0);
## Negative curvature
tmpidx = idx(find (a(idx) < 1));
if (! isempty (tmpidx))
x(tmpidx) = (ys(tmpidx) .* beta (a(tmpidx), b(tmpidx)) .* a(tmpidx)) ...
.^ (1 ./ a(tmpidx));
endif
## Positive curvature
tmpidx = idx(find (a(idx) >= 1));
if (! isempty (tmpidx))
x(tmpidx) = 1 - ...
((1 - ys(tmpidx)) .* beta (a(tmpidx), b(tmpidx)) .* b(tmpidx)) ...
.^ (1 ./ b(tmpidx));
endif
## Cleanup memory before continuing
clear ys x_i y_i idx tmpidx
if (strcmpi (tail, "lower"))
x(y == 0) = 0;
x(y == 1) = 1;
F = @(x, a, b, y) y - betainc (x, a, b);
JF = @(x, a, b, Bln) -exp ((a-1) .* log (x) + (b-1) .* log1p (-x) - Bln);
else
x(y == 0) = 1;
x(y == 1) = 0;
F = @(x, a, b, y) y - betainc (x, a, b, "upper");
JF = @(x, a, b, Bln) exp ((a-1) .* log (x) + (b-1) .* log1p (-x) - Bln);
endif
x = newton_method (F, JF, x, a, b, y);
## Restore original shape
x = reshape (x, orig_sz);
endfunction
function x = newton_method (F, JF, x, a, b, y)
Bln = betaln (a, b);
## Exclude special values that have been already computed.
todo = find ((y != 0) & (y != 1));
step = -F (x(todo), a(todo), b(todo), y(todo)) ./ ...
JF (x(todo), a(todo), b(todo), Bln(todo));
x_old = x(todo);
x(todo) += step;
dx = x(todo) - x_old;
idx = (dx != 0);
todo = todo(idx);
dx_old = dx(idx);
while (! isempty (todo))
step = -F (x(todo), a(todo), b(todo), y(todo)) ./ ...
JF (x(todo), a(todo), b(todo), Bln(todo));
x_old = x(todo);
x(todo) += step;
dx = x(todo) - x_old;
idx = (abs (dx) < abs (dx_old)); # Converging if dx is getting smaller
todo = todo(idx);
dx_old = dx(idx);
endwhile
endfunction
%!test
%! x = linspace (0.1, 0.9, 11);
%! a = [2, 3, 4];
%! [x,a,b] = ndgrid (x,a,a);
%! xx = betaincinv (betainc (x, a, b), a, b);
%! assert (xx, x, 3e-15);
%!test
%! x = linspace (0.1, 0.9, 11);
%! a = [2, 3, 4];
%! [x,a,b] = ndgrid (x,a,a);
%! xx = betaincinv (betainc (x, a, b, "upper"), a, b, "upper");
%! assert (xx, x, 3e-15);
%!test
%! x = linspace (0.1, 0.9, 11);
%! a = [0.1:0.1:1];
%! [x,a,b] = ndgrid (x,a,a);
%! xx = betaincinv (betainc (x, a, b), a, b);
%! assert (xx, x, 5e-15);
%!test
%! x = linspace (0.1, 0.9, 11);
%! a = [0.1:0.1:1];
%! [x,a,b] = ndgrid (x,a,a);
%! xx = betaincinv (betainc (x, a, b, "upper"), a, b, "upper");
%! assert (xx, x, 24*eps);
## Test the conservation of the input class
%!assert (class (betaincinv (0.5, 1, 1)), "double")
%!assert (class (betaincinv (single (0.5), 1, 1)), "single")
%!assert (class (betaincinv (0.5, single (1), 1)), "single")
%!assert (class (betaincinv (0.5, 1, single (1))), "single")
## Extreme values for y, a, b that really test the algorithm
%!assert (betaincinv ([0, 1], 1, 3), [0, 1])
%!assert <*60528> (betaincinv (1e-6, 1, 3), 3.3333344444450617e-7, 2*eps)
%!assert <*60528> (betaincinv (1-1e-6, 3, 1), 0.9999996666665555, 2*eps)
%!assert (betainc (betaincinv (0.9, 1e-3, 1), 1e-3, 1), 0.9, 2*eps)
%!assert (betainc (betaincinv (.01, 1, 1e-3), 1, 1e-3), .01, 6*eps)
%!assert (betainc (betaincinv (0.5, 100, 1), 100, 1), 0.5, 8*eps)
%!assert (betainc (betaincinv (0.5, 1, 100), 1, 100), 0.5, 22*eps)
%!assert (betaincinv ([0, 1], 1, 3, "upper"), [1, 0])
%!assert <*60528> (betaincinv (1e-6, 1, 3, "upper"), 0.99, 2*eps)
%!assert <*60528> (betaincinv (1-1e-6, 3, 1,"upper"), .01, 250*eps)
%!assert (betainc (betaincinv (0.1, 1e-3, 1, "upper"), 1e-3, 1, "upper"),
%! 0.1, 2*eps)
%!assert (betainc (betaincinv (.99, 1, 1e-3, "upper"), 1, 1e-3, "upper"),
%! .99, 6*eps)
%!assert (betainc (betaincinv (0.5, 100, 1, "upper"), 100, 1, "upper"),
%! 0.5, 8*eps)
%!assert (betainc (betaincinv (0.5, 1, 100, "upper"), 1, 100, "upper"),
%! 0.5, 22*eps)
## Test input validation
%!error <Invalid call> betaincinv ()
%!error <Invalid call> betaincinv (1)
%!error <Invalid call> betaincinv (1,2)
%!error <must be of common size or scalars>
%! betaincinv (ones (2,2), ones (1,2), 1);
%!error <must be .* floating point> betaincinv ('a', 1, 2)
%!error <must be .* floating point> betaincinv (0, int8 (1), 1)
%!error <must be .* floating point> betaincinv (0, 1, true)
%!error <must be real> betaincinv (0.5i, 1, 2)
%!error <must be real> betaincinv (0, 1i, 1)
%!error <must be real> betaincinv (0, 1, 1i)
%!error <Y must be in the range \[0, 1\]> betaincinv (-0.1,1,1)
%!error <Y must be in the range \[0, 1\]> betaincinv (1.1,1,1)
%!error <Y must be in the range \[0, 1\]>
%! y = ones (1, 1, 2);
%! y(1,1,2) = -1;
%! betaincinv (y,1,1);
%!error <A must be strictly positive> betaincinv (0.5,0,1)
%!error <A must be strictly positive>
%! a = ones (1, 1, 2);
%! a(1,1,2) = 0;
%! betaincinv (1,a,1);
%!error <B must be strictly positive> betaincinv (0.5,1,0)
%!error <B must be strictly positive>
%! b = ones (1, 1, 2);
%! b(1,1,2) = 0;
%! betaincinv (1,1,b);
%!error <invalid value for TAIL> betaincinv (1,2,3, "foobar")
|