1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
|
########################################################################
##
## Copyright (C) 1998-2024 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING. If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################
## -*- texinfo -*-
## @deftypefn {} {@var{lnb} =} betaln (@var{a}, @var{b})
## Compute the natural logarithm of the Beta function for real inputs @var{a}
## and @var{b}.
##
## @code{betaln} is defined as
## @tex
## $$
## {\rm betaln} (a, b) = \ln (B (a,b)) \equiv \ln ({\Gamma (a) \Gamma (b) \over \Gamma (a + b)}).
## $$
## @end tex
## @ifnottex
##
## @example
## betaln (a, b) = log (beta (a, b))
## @end example
##
## @end ifnottex
## and is calculated in a way to reduce the occurrence of underflow.
##
## The Beta function can grow quite large and it is often more useful to work
## with the logarithm of the output rather than the function directly.
## @seealso{beta, betainc, betaincinv, gammaln}
## @end deftypefn
function lnb = betaln (a, b)
if (nargin != 2)
print_usage ();
endif
if (! isreal (a) || ! isreal (b))
error ("betaln: A and B must be real");
elseif (! size_equal (a, b) && numel (a) != 1 && numel (b) != 1)
error ("betaln: A and B must have consistent sizes");
endif
lnb = gammaln (a) + gammaln (b) - gammaln (a + b);
endfunction
%!assert (betaln (3,4), log (beta (3,4)), eps)
## Test input validation
%!error <Invalid call> betaln ()
%!error <Invalid call> betaln (1)
%!error <A and B must be real> betaln (1i, 2)
%!error <A and B must be real> betaln (2, 1i)
%!error <A and B must have consistent sizes> betaln ([1 2], [1 2 3])
%!error <A and B must have consistent sizes> betaln ([1 2 3], [1 2])
%!error <A and B must have consistent sizes> betaln ([1 2 3], [1 2 3]')
|