File: expint.m

package info (click to toggle)
octave 9.4.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 144,300 kB
  • sloc: cpp: 332,784; ansic: 77,239; fortran: 20,963; objc: 9,396; sh: 8,213; yacc: 4,925; lex: 4,389; perl: 1,544; java: 1,366; awk: 1,259; makefile: 648; xml: 189
file content (277 lines) | stat: -rw-r--r-- 9,256 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
########################################################################
##
## Copyright (C) 2018-2024 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################

## -*- texinfo -*-
## @deftypefn {} {@var{y} =} expint (@var{x})
## Compute the exponential integral.
##
## The exponential integral is defined as:
##
## @tex
## $$
## {\rm E_1} (x) = \int_x^\infty {e^{-t} \over t} dt
## $$
## @end tex
## @ifnottex
##
## @example
## @group
##            +oo
##           /
##           | exp (-t)
## E_1 (x) = | -------- dt
##           |    t
##           /
##          x
## @end group
## @end example
##
## @end ifnottex
##
## Note: For compatibility, this function uses the @sc{matlab} definition
## of the exponential integral.  Most other sources refer to this particular
## value as @math{E_1 (x)}, and the exponential integral as
## @tex
## $$
## {\rm Ei} (x) = - \int_{-x}^\infty {e^{-t} \over t} dt.
## $$
## @end tex
## @ifnottex
##
## @example
## @group
##             +oo
##            /
##            | exp (-t)
## Ei (x) = - | -------- dt
##            |    t
##            /
##          -x
## @end group
## @end example
##
## @end ifnottex
## The two definitions are related, for positive real values of @var{x}, by
## @tex
## $
## E_1 (-x) = -{\rm Ei} (x) - i\pi.
## $
## @end tex
## @ifnottex
## @w{@code{E_1 (-x) = -Ei (x) - i*pi}}.
## @end ifnottex
##
## References:
##
## @nospell{M. Abramowitz and I.A. Stegun},
## @cite{Handbook of Mathematical Functions}, 1964.
##
## @nospell{N. Bleistein and R.A. Handelsman},
## @cite{Asymptotic expansions of integrals}, 1986.
##
## @seealso{cosint, sinint, exp}
## @end deftypefn

function E1 = expint (x)

  if (nargin < 1)
    print_usage ();
  endif

  if (! isnumeric (x))
    error ("expint: X must be numeric");
  endif

  ## Convert to floating point if necessary
  if (isinteger (x))
    x = double (x);
  endif

  orig_sparse = issparse (x);
  orig_sz = size (x);
  x = x(:);  # convert to column vector

  ## Initialize the result
  if (isreal (x) && x >= 0)
    E1 = zeros (size (x), class (x));
  else
    E1 = complex (zeros (size (x), class (x)));
  endif
  tol = eps (class (x));

  ## Divide the input into 3 regions and apply a different algorithm for each.
  ## s = series expansion, cf = continued fraction, a = asymptotic series
  s_idx = (((real (x) + 19.5).^ 2 ./ (20.5^2) + ...
            imag (x).^2 ./ (10^2)) <= 1) ...
          | (real (x) < 0 & abs (imag (x)) <= 1e-8);
  cf_idx = ((((real (x) + 1).^2 ./ (38^2) + ...
              imag (x).^2 ./ (40^2)) <= 1) ...
            & (! s_idx)) & (real (x) <= 35);
  a_idx = (! s_idx) & (! cf_idx);
  x_s  = x(s_idx);
  x_cf = x(cf_idx);
  x_a  = x(a_idx);

  ## Series expansion
  ## Abramowitz, Stegun, "Handbook of Mathematical Functions",
  ## formula 5.1.11, p 229.
  ## FIXME: Why so long?  IEEE double doesn't have this much precision.
  gm = 0.577215664901532860606512090082402431042159335;
  e1_s = -gm - log (x_s);
  res = -x_s;
  ssum = res;
  k = 1;
  todo = true (size (res));
  while (k < 1e3 && any (todo))
    res(todo) .*= (k * (- x_s(todo)) / ((k + 1) ^ 2));
    ssum(todo) += res(todo);
    k += 1;
    todo = (abs (res) > (tol * abs (ssum)));
  endwhile
  e1_s -= ssum;

  ## Continued fraction expansion,
  ## Abramowitz, Stegun, "Handbook of Mathematical Functions",
  ## formula 5.1.22, p 229.
  ## Modified Lentz's algorithm, from "Numerical recipes in Fortran 77" p.165.

  e1_cf = exp (-x_cf) .* __expint__ (x_cf);

  ## Remove spurious imaginary part if needed (__expint__ works automatically
  ## with complex values)

  if (isreal (x_cf) && x_cf >= 0)
    e1_cf = real (e1_cf);
  endif

  ## Asymptotic series, from N. Bleistein and R.A. Handelsman
  ## "Asymptotic expansion of integrals", pages 1-4.
  e1_a = exp (-x_a) ./ x_a;
  ssum = res = ones (size (x_a), class (x_a));
  k = 0;
  todo = true (size (x_a));
  while (k < 1e3 && any (todo))
    res(todo) ./= (- x_a(todo) / (k + 1));
    ssum(todo) += res(todo);
    k += 1;
    todo = abs (x_a) > k;
  endwhile
  e1_a .*= ssum;

  ## Combine results from each region into final output
  E1(s_idx)  = e1_s;
  E1(cf_idx) = e1_cf;
  E1(a_idx)  = e1_a;

  ## Restore shape and sparsity of input
  E1 = reshape (E1, orig_sz);
  if (orig_sparse)
    E1 = sparse (E1);
  endif

endfunction


## The following values were computed with the Octave symbolic package
%!test
%! X = [-50 - 50i  -30 - 50i  -10 - 50i    5 - 50i   15 - 50i   25 - 50i
%!      -50 - 30i  -30 - 30i  -10 - 30i    5 - 30i   15 - 30i   25 - 30i
%!      -50 - 10i  -30 - 10i  -10 - 10i    5 - 10i   15 - 10i   25 - 10i
%!      -50 +  5i  -30 +  5i  -10 +  5i    5 +  5i   15 +  5i   25 +  5i
%!      -50 + 15i  -30 + 15i  -10 + 15i    5 + 15i   15 + 15i   25 + 15i
%!      -50 + 25i  -30 + 25i  -10 + 25i    5 + 25i   15 + 25i   25 + 25i];
%! y_exp = [ -3.61285286166493e+19 + 6.46488018613387e+19i, ...
%!           -4.74939752018180e+10 + 1.78647798300364e+11i, ...
%!            3.78788822381261e+01 + 4.31742823558278e+02i, ...
%!            5.02062497548626e-05 + 1.23967883532795e-04i, ...
%!            3.16785290137650e-09 + 4.88866651583182e-09i, ...
%!            1.66999261039533e-13 + 1.81161508735941e-13i;
%!            3.47121527628275e+19 + 8.33104448629260e+19i, ...
%!            1.54596484273693e+11 + 2.04179357837414e+11i, ...
%!            6.33946547999647e+02 + 3.02965459323125e+02i, ...
%!            2.19834747595065e-04 - 9.25266900230165e-06i, ...
%!            8.49515487435091e-09 - 2.95133588338825e-09i, ...
%!            2.96635342439717e-13 - 1.85401806861382e-13i;
%!            9.65535916388246e+19 + 3.78654062133933e+19i, ...
%!            3.38477774418380e+11 + 8.37063899960569e+10i, ...
%!            1.57615042657685e+03 - 4.33777639047543e+02i, ...
%!            2.36176542789578e-05 - 5.75861972980636e-04i, ...
%!           -6.83624588479039e-09 - 1.47230889442175e-08i, ...
%!           -2.93020801760942e-13 - 4.03912221595793e-13i;
%!           -1.94572937469407e+19 - 1.03494929263031e+20i, ...
%!           -4.22385087573180e+10 - 3.61103191095041e+11i, ...
%!            4.89771220858552e+02 - 2.09175729060712e+03i, ...
%!            7.26650666035639e-04 + 4.71027801635222e-04i, ...
%!            1.02146578536128e-08 + 1.51813977370467e-08i, ...
%!            2.41628751621686e-13 + 4.66309048729523e-13i;
%!            5.42351559144068e+19 + 8.54503231614651e+19i, ...
%!            1.22886461074544e+11 + 3.03555953589323e+11i, ...
%!           -2.13050339387819e+02 + 1.23853666784218e+03i, ...
%!           -3.68087391884738e-04 + 1.94003994408861e-04i, ...
%!           -1.39355838231763e-08 + 6.57189276453356e-10i, ...
%!           -4.55133112151501e-13 - 8.46035902535333e-14i;
%!           -7.75482228205081e+19 - 5.36017490438329e+19i, ...
%!           -1.85284579257329e+11 - 2.08761110392897e+11i, ...
%!           -1.74210199269860e+02 - 8.09467914953486e+02i, ...
%!            9.40470496160143e-05 - 2.44265223110736e-04i, ...
%!            6.64487526601190e-09 - 7.87242868014498e-09i, ...
%!            3.10273337426175e-13 - 2.28030229776792e-13i];
%! assert (expint (X), y_exp, -1e-14);

## Exceptional values (-Inf, Inf, NaN, 0, 0.37250741078)
%!test
%! x = [-Inf; Inf; NaN; 0; -0.3725074107813668];
%! y_exp = [-Inf - i*pi; 0; NaN; Inf; 0 - i*pi];
%! y = expint (x);
%! assert (y, y_exp, 5*eps);

%!test <*53351>
%! assert (expint (32.5 + 1i),
%!         1.181108930758065e-16 - 1.966348533426658e-16i, -4*eps);
%! assert (expint (44 + 1i),
%!         9.018757389858152e-22 - 1.475771020004195e-21i, -4*eps);

%!test <*47738>
%! assert (expint (10i), 0.0454564330044554 + 0.0875512674239774i, -5*eps);

## Test preservation or conversion of the class
%!assert (class (expint (single (1))), "single")
%!assert (class (expint (int8 (1))), "double")
%!assert (class (expint (int16 (1))), "double")
%!assert (class (expint (int32 (1))), "double")
%!assert (class (expint (int64 (1))), "double")
%!assert (class (expint (uint8 (1))), "double")
%!assert (class (expint (uint16 (1))), "double")
%!assert (class (expint (uint32 (1))), "double")
%!assert (class (expint (uint64 (1))), "double")
%!assert (issparse (expint (sparse (1))))

## Test on the correct Image set
%!assert (isreal (expint (linspace (0, 100))))
%!assert (! isreal (expint (-1)))

## Test input validation
%!error <Invalid call> expint ()
%!error <X must be numeric> expint ("1")