1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
|
########################################################################
##
## Copyright (C) 2018-2024 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING. If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################
## -*- texinfo -*-
## @deftypefn {} {@var{y} =} expint (@var{x})
## Compute the exponential integral.
##
## The exponential integral is defined as:
##
## @tex
## $$
## {\rm E_1} (x) = \int_x^\infty {e^{-t} \over t} dt
## $$
## @end tex
## @ifnottex
##
## @example
## @group
## +oo
## /
## | exp (-t)
## E_1 (x) = | -------- dt
## | t
## /
## x
## @end group
## @end example
##
## @end ifnottex
##
## Note: For compatibility, this function uses the @sc{matlab} definition
## of the exponential integral. Most other sources refer to this particular
## value as @math{E_1 (x)}, and the exponential integral as
## @tex
## $$
## {\rm Ei} (x) = - \int_{-x}^\infty {e^{-t} \over t} dt.
## $$
## @end tex
## @ifnottex
##
## @example
## @group
## +oo
## /
## | exp (-t)
## Ei (x) = - | -------- dt
## | t
## /
## -x
## @end group
## @end example
##
## @end ifnottex
## The two definitions are related, for positive real values of @var{x}, by
## @tex
## $
## E_1 (-x) = -{\rm Ei} (x) - i\pi.
## $
## @end tex
## @ifnottex
## @w{@code{E_1 (-x) = -Ei (x) - i*pi}}.
## @end ifnottex
##
## References:
##
## @nospell{M. Abramowitz and I.A. Stegun},
## @cite{Handbook of Mathematical Functions}, 1964.
##
## @nospell{N. Bleistein and R.A. Handelsman},
## @cite{Asymptotic expansions of integrals}, 1986.
##
## @seealso{cosint, sinint, exp}
## @end deftypefn
function E1 = expint (x)
if (nargin < 1)
print_usage ();
endif
if (! isnumeric (x))
error ("expint: X must be numeric");
endif
## Convert to floating point if necessary
if (isinteger (x))
x = double (x);
endif
orig_sparse = issparse (x);
orig_sz = size (x);
x = x(:); # convert to column vector
## Initialize the result
if (isreal (x) && x >= 0)
E1 = zeros (size (x), class (x));
else
E1 = complex (zeros (size (x), class (x)));
endif
tol = eps (class (x));
## Divide the input into 3 regions and apply a different algorithm for each.
## s = series expansion, cf = continued fraction, a = asymptotic series
s_idx = (((real (x) + 19.5).^ 2 ./ (20.5^2) + ...
imag (x).^2 ./ (10^2)) <= 1) ...
| (real (x) < 0 & abs (imag (x)) <= 1e-8);
cf_idx = ((((real (x) + 1).^2 ./ (38^2) + ...
imag (x).^2 ./ (40^2)) <= 1) ...
& (! s_idx)) & (real (x) <= 35);
a_idx = (! s_idx) & (! cf_idx);
x_s = x(s_idx);
x_cf = x(cf_idx);
x_a = x(a_idx);
## Series expansion
## Abramowitz, Stegun, "Handbook of Mathematical Functions",
## formula 5.1.11, p 229.
## FIXME: Why so long? IEEE double doesn't have this much precision.
gm = 0.577215664901532860606512090082402431042159335;
e1_s = -gm - log (x_s);
res = -x_s;
ssum = res;
k = 1;
todo = true (size (res));
while (k < 1e3 && any (todo))
res(todo) .*= (k * (- x_s(todo)) / ((k + 1) ^ 2));
ssum(todo) += res(todo);
k += 1;
todo = (abs (res) > (tol * abs (ssum)));
endwhile
e1_s -= ssum;
## Continued fraction expansion,
## Abramowitz, Stegun, "Handbook of Mathematical Functions",
## formula 5.1.22, p 229.
## Modified Lentz's algorithm, from "Numerical recipes in Fortran 77" p.165.
e1_cf = exp (-x_cf) .* __expint__ (x_cf);
## Remove spurious imaginary part if needed (__expint__ works automatically
## with complex values)
if (isreal (x_cf) && x_cf >= 0)
e1_cf = real (e1_cf);
endif
## Asymptotic series, from N. Bleistein and R.A. Handelsman
## "Asymptotic expansion of integrals", pages 1-4.
e1_a = exp (-x_a) ./ x_a;
ssum = res = ones (size (x_a), class (x_a));
k = 0;
todo = true (size (x_a));
while (k < 1e3 && any (todo))
res(todo) ./= (- x_a(todo) / (k + 1));
ssum(todo) += res(todo);
k += 1;
todo = abs (x_a) > k;
endwhile
e1_a .*= ssum;
## Combine results from each region into final output
E1(s_idx) = e1_s;
E1(cf_idx) = e1_cf;
E1(a_idx) = e1_a;
## Restore shape and sparsity of input
E1 = reshape (E1, orig_sz);
if (orig_sparse)
E1 = sparse (E1);
endif
endfunction
## The following values were computed with the Octave symbolic package
%!test
%! X = [-50 - 50i -30 - 50i -10 - 50i 5 - 50i 15 - 50i 25 - 50i
%! -50 - 30i -30 - 30i -10 - 30i 5 - 30i 15 - 30i 25 - 30i
%! -50 - 10i -30 - 10i -10 - 10i 5 - 10i 15 - 10i 25 - 10i
%! -50 + 5i -30 + 5i -10 + 5i 5 + 5i 15 + 5i 25 + 5i
%! -50 + 15i -30 + 15i -10 + 15i 5 + 15i 15 + 15i 25 + 15i
%! -50 + 25i -30 + 25i -10 + 25i 5 + 25i 15 + 25i 25 + 25i];
%! y_exp = [ -3.61285286166493e+19 + 6.46488018613387e+19i, ...
%! -4.74939752018180e+10 + 1.78647798300364e+11i, ...
%! 3.78788822381261e+01 + 4.31742823558278e+02i, ...
%! 5.02062497548626e-05 + 1.23967883532795e-04i, ...
%! 3.16785290137650e-09 + 4.88866651583182e-09i, ...
%! 1.66999261039533e-13 + 1.81161508735941e-13i;
%! 3.47121527628275e+19 + 8.33104448629260e+19i, ...
%! 1.54596484273693e+11 + 2.04179357837414e+11i, ...
%! 6.33946547999647e+02 + 3.02965459323125e+02i, ...
%! 2.19834747595065e-04 - 9.25266900230165e-06i, ...
%! 8.49515487435091e-09 - 2.95133588338825e-09i, ...
%! 2.96635342439717e-13 - 1.85401806861382e-13i;
%! 9.65535916388246e+19 + 3.78654062133933e+19i, ...
%! 3.38477774418380e+11 + 8.37063899960569e+10i, ...
%! 1.57615042657685e+03 - 4.33777639047543e+02i, ...
%! 2.36176542789578e-05 - 5.75861972980636e-04i, ...
%! -6.83624588479039e-09 - 1.47230889442175e-08i, ...
%! -2.93020801760942e-13 - 4.03912221595793e-13i;
%! -1.94572937469407e+19 - 1.03494929263031e+20i, ...
%! -4.22385087573180e+10 - 3.61103191095041e+11i, ...
%! 4.89771220858552e+02 - 2.09175729060712e+03i, ...
%! 7.26650666035639e-04 + 4.71027801635222e-04i, ...
%! 1.02146578536128e-08 + 1.51813977370467e-08i, ...
%! 2.41628751621686e-13 + 4.66309048729523e-13i;
%! 5.42351559144068e+19 + 8.54503231614651e+19i, ...
%! 1.22886461074544e+11 + 3.03555953589323e+11i, ...
%! -2.13050339387819e+02 + 1.23853666784218e+03i, ...
%! -3.68087391884738e-04 + 1.94003994408861e-04i, ...
%! -1.39355838231763e-08 + 6.57189276453356e-10i, ...
%! -4.55133112151501e-13 - 8.46035902535333e-14i;
%! -7.75482228205081e+19 - 5.36017490438329e+19i, ...
%! -1.85284579257329e+11 - 2.08761110392897e+11i, ...
%! -1.74210199269860e+02 - 8.09467914953486e+02i, ...
%! 9.40470496160143e-05 - 2.44265223110736e-04i, ...
%! 6.64487526601190e-09 - 7.87242868014498e-09i, ...
%! 3.10273337426175e-13 - 2.28030229776792e-13i];
%! assert (expint (X), y_exp, -1e-14);
## Exceptional values (-Inf, Inf, NaN, 0, 0.37250741078)
%!test
%! x = [-Inf; Inf; NaN; 0; -0.3725074107813668];
%! y_exp = [-Inf - i*pi; 0; NaN; Inf; 0 - i*pi];
%! y = expint (x);
%! assert (y, y_exp, 5*eps);
%!test <*53351>
%! assert (expint (32.5 + 1i),
%! 1.181108930758065e-16 - 1.966348533426658e-16i, -4*eps);
%! assert (expint (44 + 1i),
%! 9.018757389858152e-22 - 1.475771020004195e-21i, -4*eps);
%!test <*47738>
%! assert (expint (10i), 0.0454564330044554 + 0.0875512674239774i, -5*eps);
## Test preservation or conversion of the class
%!assert (class (expint (single (1))), "single")
%!assert (class (expint (int8 (1))), "double")
%!assert (class (expint (int16 (1))), "double")
%!assert (class (expint (int32 (1))), "double")
%!assert (class (expint (int64 (1))), "double")
%!assert (class (expint (uint8 (1))), "double")
%!assert (class (expint (uint16 (1))), "double")
%!assert (class (expint (uint32 (1))), "double")
%!assert (class (expint (uint64 (1))), "double")
%!assert (issparse (expint (sparse (1))))
## Test on the correct Image set
%!assert (isreal (expint (linspace (0, 100))))
%!assert (! isreal (expint (-1)))
## Test input validation
%!error <Invalid call> expint ()
%!error <X must be numeric> expint ("1")
|