File: factor.m

package info (click to toggle)
octave 9.4.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 144,300 kB
  • sloc: cpp: 332,784; ansic: 77,239; fortran: 20,963; objc: 9,396; sh: 8,213; yacc: 4,925; lex: 4,389; perl: 1,544; java: 1,366; awk: 1,259; makefile: 648; xml: 189
file content (229 lines) | stat: -rw-r--r-- 7,605 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
########################################################################
##
## Copyright (C) 2000-2024 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################

## -*- texinfo -*-
## @deftypefn  {} {@var{pf} =} factor (@var{q})
## @deftypefnx {} {[@var{pf}, @var{n}] =} factor (@var{q})
## Return the prime factorization of @var{q}.
##
## The prime factorization is defined as @code{prod (@var{pf}) == @var{q}}
## where every element of @var{pf} is a prime number.  If @code{@var{q} == 1},
## return 1.  The output @var{pf} is of the same numeric class as the input.
##
## With two output arguments, return the unique prime factors @var{pf} and
## their multiplicities.  That is,
## @code{prod (@var{pf} .^ @var{n}) == @var{q}}.
##
## Implementation Note: If the input @var{q} is @code{single} or @code{double},
## then it must not exceed the corresponding @code{flintmax}.  For larger
## inputs, cast them to @code{uint64} if they're less than 2^64:
##
## @example
## @group
## factor (uint64 (18446744073709011493))
##    @result{}     571111    761213  42431951
## @end group
## @end example
##
## For even larger inputs, use @code{sym} if you have the Symbolic package
## installed and loaded:
##
## @example
## @group
## factor (sym ('9444733049654361449941'))
##    @result{} (sym)
##               1           1
##  1099511627689 ⋅8589934669
## @end group
## @end example
## @seealso{gcd, lcm, isprime, primes}
## @end deftypefn

function [pf, n] = factor (q)

  if (nargin < 1)
    print_usage ();
  endif

  if (! isscalar (q) || ! isreal (q) || q < 0 || q != fix (q))
    error ("factor: Q must be a real non-negative integer");
  endif

  ## Special case if q is prime, because isprime() is now much faster than
  ## factor().  This also absorbs the case of q < 4, where there are no primes
  ## less than sqrt(q).
  if (q < 4 || isprime (q))
    pf = q;
    n = 1;
    return;
  endif

  ## If we are here, then q is composite.

  cls = class (q);  # store class
  if (isfloat (q) && q > flintmax (q))
    error ("factor: Q too large to factor (> flintmax)");
  endif

  ## The overall flow is this:
  ## 1. Divide by small primes smaller than q^0.2, if any.
  ## 2. Use Pollard Rho to reduce the value below 1e10 if possible.
  ## 3. Divide by primes smaller than sqrt (q), if any.
  ## 4. At all stages, stop if the remaining value is prime.

  ## First divide by primes (q ^ 0.2).
  ## For q < 1e10, we can hard-code the primes.
  if (q < 1e10)
    smallprimes = feval (cls, ...
      [2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97]);
  else
    smallprimes = primes (feval (cls, q ^ 0.2));
  endif

  ## pf is the list of prime factors returned with type of input class.
  pf = feval (cls, []);
  [pf, q] = reducefactors (q, pf, smallprimes);

  ## pf now contains all prime factors of q within smallprimes, including
  ## repetitions, in ascending order.
  ##
  ## q itself has been divided by those prime factors to become smaller,
  ## unless q was prime to begin with.

  sortflag = false;
  if (isprime (q))
    pf(end+1) = q;
  elseif (q > 1)
    ## Use Pollard Rho technique to pull factors one at a time.
    while (q > 1e10 && ! isprime (q))
      pr = feval (cls, __pollardrho__ (q));  # pr is a factor of q.

      ## There is a small chance (13 in 1e5) that pr is not actually prime.
      ## To guard against that, factorize pr, which will force smaller factors
      ## to be found.  The use of isprime above guards against infinite
      ## recursion.
      if (! isprime (pr))
        pr = factor (pr);
      endif

      [pf, q] = reducefactors (q, pf, pr);
      ## q is now divided by all occurrences of factor(s) pr.
      sortflag = true;
    endwhile

    if (isprime (q))
      pf(end+1) = q;
    elseif (q > 1)
      ## If we are here, then q is composite but less than 1e10,
      ## and that is fast enough to test by division.
      largeprimes = primes (feval (cls, sqrt (q)));
      [pf, q] = reducefactors (q, pf, largeprimes);

      ## If q is still not 1, then it must be a prime of power 1.
      if (q > 1)
        pf(end+1) = q;
      endif
    endif
  endif

  ## The Pollard Rho technique can give factors in arbitrary order,
  ## so we need to sort pf if that was used.
  if (sortflag)
    pf = sort (pf);
  endif

  ## Determine multiplicity.
  if (nargout > 1)
    idx = find ([0, pf] != [pf, 0]);
    pf = pf(idx(1:length (idx)-1));
    n = diff (idx);
  endif

endfunction

function [pf, q] = reducefactors (qin, pfin, divisors)

  pf = pfin;
  q = qin;
  divisors = divisors (mod (q, divisors) == 0);

  for pp = divisors  # for each factor in turn
    ## Keep extracting all occurrences of that factor before going to larger
    ## factors.
    while (mod (q, pp) == 0)
      pf(end+1) = pp;
      q /= pp;
    endwhile
  endfor

endfunction


## Test special case input
%!assert (factor (1), 1)
%!assert (factor (2), 2)
%!assert (factor (3), 3)

%!test
%! for i = 2:20
%!   pf = factor (i);
%!   assert (prod (pf), i);
%!   assert (all (isprime (pf)));
%!   [pf, n] = factor (i);
%!   assert (prod (pf.^n), i);
%!   assert (all ([0,pf] != [pf,0]));
%! endfor

## Make sure that all factors returned are indeed prime, even when
## __pollardrho__ returns a composite factor.
%!assert (all (isprime (factor (uint64 (18446744073707633197)))))
%!assert (all (isprime (factor (uint64 (18446744073707551733)))))
%!assert (all (isprime (factor (uint64 (18446744073709427857)))))
%!assert (all (isprime (factor (uint64 (18446744073709396891)))))
%!assert (all (isprime (factor (uint64 (18446744073708666563)))))
%!assert (all (isprime (factor (uint64 (18446744073708532009)))))
%!assert (all (isprime (factor (uint64 (18446744073708054211)))))
%!assert (all (isprime (factor (uint64 (18446744073707834741)))))
%!assert (all (isprime (factor (uint64 (18446744073707298053)))))
%!assert (all (isprime (factor (uint64 (18446744073709407383)))))
%!assert (all (isprime (factor (uint64 (18446744073708730121)))))
%!assert (all (isprime (factor (uint64 (18446744073708104447)))))
%!assert (all (isprime (factor (uint64 (18446744073709011493)))))

%!assert (factor (uint8 (8)), uint8 ([2 2 2]))
%!assert (factor (single (8)), single ([2 2 2]))
%!test
%! [pf, n] = factor (int16 (8));
%! assert (pf, int16 (2));
%! assert (n, double (3));

## Test input validation
%!error <Invalid call> factor ()
%!error <Q must be a real non-negative integer> factor ([1,2])
%!error <Q must be a real non-negative integer> factor (6i)
%!error <Q must be a real non-negative integer> factor (-20)
%!error <Q must be a real non-negative integer> factor (1.5)
%!error <Q too large to factor> factor (flintmax ("single") + 2)
%!error <Q too large to factor> factor (flintmax ("double") + 2)