File: gammaincinv.m

package info (click to toggle)
octave 9.4.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 144,300 kB
  • sloc: cpp: 332,784; ansic: 77,239; fortran: 20,963; objc: 9,396; sh: 8,213; yacc: 4,925; lex: 4,389; perl: 1,544; java: 1,366; awk: 1,259; makefile: 648; xml: 189
file content (334 lines) | stat: -rw-r--r-- 9,450 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
########################################################################
##
## Copyright (C) 2017-2024 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################

## -*- texinfo -*-
## @deftypefn  {} {@var{x} =} gammaincinv (@var{y}, @var{a})
## @deftypefnx {} {@var{x} =} gammaincinv (@var{y}, @var{a}, @var{tail})
## Compute the inverse of the normalized incomplete gamma function.
##
## The normalized incomplete gamma function is defined as
## @tex
## $$
##  \gamma (x, a) = {1 \over {\Gamma (a)}}\displaystyle{\int_0^x t^{a-1} e^{-t} dt}
## $$
## @end tex
## @ifnottex
##
## @example
## @group
##                                 x
##                        1       /
## gammainc (x, a) = ---------    | exp (-t) t^(a-1) dt
##                   gamma (a)    /
##                             t=0
## @end group
## @end example
##
## @end ifnottex
##
## and @code{gammaincinv (gammainc (@var{x}, @var{a}), @var{a}) = @var{x}}
## for each non-negative value of @var{x}.  If @var{a} is scalar then
## @code{gammaincinv (@var{y}, @var{a})} is returned for each element of
## @var{y} and vice versa.
##
## If neither @var{y} nor @var{a} is scalar then the sizes of @var{y} and
## @var{a} must agree, and @code{gammaincinv} is applied element-by-element.
## The variable @var{y} must be in the interval @math{[0,1]} while @var{a} must
## be real and positive.
##
## By default, @var{tail} is @qcode{"lower"} and the inverse of the incomplete
## gamma function integrated from 0 to @var{x} is computed.  If @var{tail} is
## @qcode{"upper"}, then the complementary function integrated from @var{x} to
## infinity is inverted.
##
## The function is computed with Newton's method by solving
## @tex
## $$
##  y - \gamma (x, a) = 0
## $$
## @end tex
## @ifnottex
##
## @example
## @var{y} - gammainc (@var{x}, @var{a}) = 0
## @end example
##
## @end ifnottex
##
## Reference: @nospell{A. Gil, J. Segura, and N. M. Temme}, @cite{Efficient and
## accurate algorithms for the computation and inversion of the incomplete
## gamma function ratios}, @nospell{SIAM J. Sci.@: Computing}, pp.@:
## A2965--A2981, Vol 34, 2012.
##
## @seealso{gammainc, gamma, gammaln}
## @end deftypefn

function x = gammaincinv (y, a, tail = "lower")

  if (nargin < 2)
    print_usage ();
  endif

  [err, y, a] = common_size (y, a);
  if (err > 0)
    error ("gammaincinv: Y and A must be of common size or scalars");
  endif

  if (iscomplex (y) || iscomplex (a))
    error ("gammaincinv: all inputs must be real");
  endif

  ## Remember original shape of data, but convert to column vector for calcs.
  orig_sz = size (y);
  y = y(:);
  a = a(:);

  if (any ((y < 0) | (y > 1)))
    error ("gammaincinv: Y must be in the range [0, 1]");
  endif

  if (any (a <= 0))
    error ("gammaincinv: A must be strictly positive");
  endif

  ## If any of the arguments is single then the output should be as well.
  if (strcmp (class (y), "single") || strcmp (class (a), "single"))
    y = single (y);
    a = single (a);
  endif

  ## Convert to floating point if necessary
  if (isinteger (y))
    y = double (y);
  endif
  if (isinteger (a))
    a = double (a);
  endif

  ## Initialize output array
  x = zeros (size (y), class (y));

  maxit = 20;
  tol = eps (class (y));

  ## Special cases, a = 1 or y = 0, 1.

  if (strcmpi (tail, "lower"))
    x(a == 1) = - log1p (- y(a == 1));
    x(y == 0) = 0;
    x(y == 1) = Inf;
    p = y;
    q = 1 - p;
  elseif (strcmpi (tail, "upper"))
    x(a == 1) = - log (y(a == 1));
    x(y == 0) = Inf;
    x(y == 1) = 0;
    q = y;
    p = 1 - q;
  else
    error ("gammaincinv: invalid value for TAIL");
  endif

  todo = (a != 1) & (y != 0) & (y != 1);

  ## Case 1: p small.

  i_flag_1 = todo & (p < ((0.2 * (1 + a)) .^ a) ./ gamma (1 + a));

  if (any (i_flag_1))
    aa = a(i_flag_1);
    pp = p(i_flag_1);

    ## Initial guess.

    r = (pp .* gamma (1 + aa)) .^ (1 ./ aa);

    c2 = 1 ./ (aa + 1);
    c3 = (3  * aa + 5) ./ (2 * (aa + 1) .^2 .* (aa + 2));
    c4 = (8 * aa .^ 2 + 33 * aa + 31) ./ (3 * (aa + 1) .^ 3 .* (aa + 2) .* ...
         (aa + 3));
    c5 = (125 * aa .^ 4 + 1179 * aa .^ 3 + 3971 * aa.^2 + 5661 * aa + 2888) ...
         ./ (24 * (1 + aa) .^4 .* (aa + 2) .^ 2 .* (aa + 3) .* (aa + 4));

    ## FIXME: Would polyval() be better here for more accuracy?
    x0 = r + c2 .* r .^ 2 + c3 .* r .^ 3 + c4 .* r .^4 + c5 .* r .^ 5;

    ## For this case we invert the lower version.

    F = @(p, a, x) p - gammainc (x, a, "lower");
    JF = @(a, x) - exp (- gammaln (a) - x + (a - 1) .* log (x));
    x(i_flag_1) = newton_method (F, JF, pp, aa, x0, tol, maxit);
  endif

  todo(i_flag_1) = false;

  ## Case 2: q small.

  i_flag_2 = (q < exp (- 0.5 * a) ./ gamma (1 + a)) & (a > 0) & (a < 10);
  i_flag_2 &= todo;

  if (any (i_flag_2))
    aa = a(i_flag_2);
    qq = q(i_flag_2);

    ## Initial guess.

    x0 = (-log (qq) - gammaln (aa));

    ## For this case, we invert the upper version.

    F = @(q, a, x) q - gammainc (x, a, "upper");
    JF = @(a, x) exp (- gammaln (a) - x) .* x .^ (a - 1);
    x(i_flag_2) = newton_method (F, JF, qq, aa, x0, tol, maxit);
  endif

  todo(i_flag_2) = false;

  ## Case 3: a small.

  i_flag_3 = todo & ((a > 0) & (a < 1));

  if (any (i_flag_3))
    aa = a(i_flag_3);
    pp = p(i_flag_3);

    ## Initial guess

    xl = (pp .* gamma (aa + 1)) .^ (1 ./ aa);
    x0 = xl;

    ## For this case, we invert the lower version.

    F = @(p, a, x) p - gammainc (x, a, "lower");
    JF = @(a, x) - exp (-gammaln (a) - x) .* x .^ (a - 1);
    x(i_flag_3) = newton_method (F, JF, pp, aa, x0, tol, maxit);
  endif

  todo(i_flag_3) = false;

  ## Case 4: a large.

  i_flag_4 = todo;

  if (any (i_flag_4))
    aa = a(i_flag_4);
    qq = q(i_flag_4);

    ## Initial guess

    d = 1 ./ (9 * aa);
    t = 1 - d + sqrt (2) * erfcinv (2 * qq) .* sqrt (d);
    x0 = aa .* (t .^ 3);

    ## For this case, we invert the upper version.

    F = @(q, a, x) q - gammainc (x, a, "upper");
    JF = @(a, x) exp (- gammaln (a) - x + (a - 1) .* log (x));
    x(i_flag_4) = newton_method (F, JF, qq, aa, x0, tol, maxit);
  endif

  ## Restore original shape
  x = reshape (x, orig_sz);

endfunction

## subfunction: Newton's Method
function x = newton_method (F, JF, y, a, x0, tol, maxit)

  l = numel (y);
  res = -F (y, a, x0) ./ JF (a, x0);
  todo = (abs (res) >= tol * abs (x0));
  x = x0;
  it = 0;
  while (any (todo) && (it++ < maxit))
    x(todo) += res(todo);
    res(todo) = -F (y(todo), a(todo), x(todo)) ./ JF (a(todo), x(todo));
    todo = (abs (res) >= tol * abs (x));
  endwhile
  x += res;

endfunction


%!test
%! x = [1e-10, 1e-09, 1e-08, 1e-07];
%! a = [2, 3, 4];
%! [x, a] = ndgrid (x, a);
%! xx = gammainc (gammaincinv (x, a), a);
%! assert (xx, x, -3e-14);

%!test
%! x = [1e-10, 1e-09, 1e-08, 1e-07];
%! a = [2, 3, 4];
%! [x, a] = ndgrid (x, a);
%! xx = gammainc (gammaincinv (x, a, "upper"), a, "upper");
%! assert (xx, x, -3e-14);

%!test
%! x = linspace (0, 1)';
%! a = [linspace(0.1, 1, 10), 2:5];
%! [x, a] = ndgrid (x, a);
%! xx = gammainc (gammaincinv (x, a), a);
%! assert (xx, x, -1e-13);

%!test
%! x = linspace (0, 1)';
%! a = [linspace(0.1, 1, 10), 2:5];
%! [x, a] = ndgrid (x, a);
%! xx = gammainc (gammaincinv (x, a, "upper"), a, "upper");
%! assert (xx, x, -1e-13);

%!test <*56453>
%! assert (gammaincinv (1e-15, 1) * 2, 2e-15, -1e-15);
%! assert (gammaincinv (1e-16, 1) * 2, 2e-16, -1e-15);

## Test the conservation of the input class
%!assert (class (gammaincinv (0.5, 1)), "double")
%!assert (class (gammaincinv (single (0.5), 1)), "single")
%!assert (class (gammaincinv (0.5, single (1))), "single")
%!assert (class (gammaincinv (int8 (0), 1)), "double")
%!assert (class (gammaincinv (0.5, int8 (1))), "double")
%!assert (class (gammaincinv (int8 (0), single (1))), "single")
%!assert (class (gammaincinv (single (0.5), int8 (1))), "single")

## Test input validation
%!error <Invalid call> gammaincinv ()
%!error <Invalid call> gammaincinv (1)
%!error <must be of common size or scalars>
%! gammaincinv (ones (2,2), ones (1,2), 1);
%!error <all inputs must be real> gammaincinv (0.5i, 1)
%!error <all inputs must be real> gammaincinv (0, 1i)
%!error <Y must be in the range \[0, 1\]> gammaincinv (-0.1,1)
%!error <Y must be in the range \[0, 1\]> gammaincinv (1.1,1)
%!error <Y must be in the range \[0, 1\]>
%! y = ones (1, 1, 2);
%! y(1,1,2) = -1;
%! gammaincinv (y,1);
%!error <A must be strictly positive> gammaincinv (0.5, 0)
%!error <A must be strictly positive>
%! a = ones (1, 1, 2);
%! a(1,1,2) = 0;
%! gammaincinv (1,a,1);
%!error <invalid value for TAIL> gammaincinv (1,2, "foobar")