1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
|
########################################################################
##
## Copyright (C) 2017-2024 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING. If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################
## -*- texinfo -*-
## @deftypefn {} {@var{x} =} gammaincinv (@var{y}, @var{a})
## @deftypefnx {} {@var{x} =} gammaincinv (@var{y}, @var{a}, @var{tail})
## Compute the inverse of the normalized incomplete gamma function.
##
## The normalized incomplete gamma function is defined as
## @tex
## $$
## \gamma (x, a) = {1 \over {\Gamma (a)}}\displaystyle{\int_0^x t^{a-1} e^{-t} dt}
## $$
## @end tex
## @ifnottex
##
## @example
## @group
## x
## 1 /
## gammainc (x, a) = --------- | exp (-t) t^(a-1) dt
## gamma (a) /
## t=0
## @end group
## @end example
##
## @end ifnottex
##
## and @code{gammaincinv (gammainc (@var{x}, @var{a}), @var{a}) = @var{x}}
## for each non-negative value of @var{x}. If @var{a} is scalar then
## @code{gammaincinv (@var{y}, @var{a})} is returned for each element of
## @var{y} and vice versa.
##
## If neither @var{y} nor @var{a} is scalar then the sizes of @var{y} and
## @var{a} must agree, and @code{gammaincinv} is applied element-by-element.
## The variable @var{y} must be in the interval @math{[0,1]} while @var{a} must
## be real and positive.
##
## By default, @var{tail} is @qcode{"lower"} and the inverse of the incomplete
## gamma function integrated from 0 to @var{x} is computed. If @var{tail} is
## @qcode{"upper"}, then the complementary function integrated from @var{x} to
## infinity is inverted.
##
## The function is computed with Newton's method by solving
## @tex
## $$
## y - \gamma (x, a) = 0
## $$
## @end tex
## @ifnottex
##
## @example
## @var{y} - gammainc (@var{x}, @var{a}) = 0
## @end example
##
## @end ifnottex
##
## Reference: @nospell{A. Gil, J. Segura, and N. M. Temme}, @cite{Efficient and
## accurate algorithms for the computation and inversion of the incomplete
## gamma function ratios}, @nospell{SIAM J. Sci.@: Computing}, pp.@:
## A2965--A2981, Vol 34, 2012.
##
## @seealso{gammainc, gamma, gammaln}
## @end deftypefn
function x = gammaincinv (y, a, tail = "lower")
if (nargin < 2)
print_usage ();
endif
[err, y, a] = common_size (y, a);
if (err > 0)
error ("gammaincinv: Y and A must be of common size or scalars");
endif
if (iscomplex (y) || iscomplex (a))
error ("gammaincinv: all inputs must be real");
endif
## Remember original shape of data, but convert to column vector for calcs.
orig_sz = size (y);
y = y(:);
a = a(:);
if (any ((y < 0) | (y > 1)))
error ("gammaincinv: Y must be in the range [0, 1]");
endif
if (any (a <= 0))
error ("gammaincinv: A must be strictly positive");
endif
## If any of the arguments is single then the output should be as well.
if (strcmp (class (y), "single") || strcmp (class (a), "single"))
y = single (y);
a = single (a);
endif
## Convert to floating point if necessary
if (isinteger (y))
y = double (y);
endif
if (isinteger (a))
a = double (a);
endif
## Initialize output array
x = zeros (size (y), class (y));
maxit = 20;
tol = eps (class (y));
## Special cases, a = 1 or y = 0, 1.
if (strcmpi (tail, "lower"))
x(a == 1) = - log1p (- y(a == 1));
x(y == 0) = 0;
x(y == 1) = Inf;
p = y;
q = 1 - p;
elseif (strcmpi (tail, "upper"))
x(a == 1) = - log (y(a == 1));
x(y == 0) = Inf;
x(y == 1) = 0;
q = y;
p = 1 - q;
else
error ("gammaincinv: invalid value for TAIL");
endif
todo = (a != 1) & (y != 0) & (y != 1);
## Case 1: p small.
i_flag_1 = todo & (p < ((0.2 * (1 + a)) .^ a) ./ gamma (1 + a));
if (any (i_flag_1))
aa = a(i_flag_1);
pp = p(i_flag_1);
## Initial guess.
r = (pp .* gamma (1 + aa)) .^ (1 ./ aa);
c2 = 1 ./ (aa + 1);
c3 = (3 * aa + 5) ./ (2 * (aa + 1) .^2 .* (aa + 2));
c4 = (8 * aa .^ 2 + 33 * aa + 31) ./ (3 * (aa + 1) .^ 3 .* (aa + 2) .* ...
(aa + 3));
c5 = (125 * aa .^ 4 + 1179 * aa .^ 3 + 3971 * aa.^2 + 5661 * aa + 2888) ...
./ (24 * (1 + aa) .^4 .* (aa + 2) .^ 2 .* (aa + 3) .* (aa + 4));
## FIXME: Would polyval() be better here for more accuracy?
x0 = r + c2 .* r .^ 2 + c3 .* r .^ 3 + c4 .* r .^4 + c5 .* r .^ 5;
## For this case we invert the lower version.
F = @(p, a, x) p - gammainc (x, a, "lower");
JF = @(a, x) - exp (- gammaln (a) - x + (a - 1) .* log (x));
x(i_flag_1) = newton_method (F, JF, pp, aa, x0, tol, maxit);
endif
todo(i_flag_1) = false;
## Case 2: q small.
i_flag_2 = (q < exp (- 0.5 * a) ./ gamma (1 + a)) & (a > 0) & (a < 10);
i_flag_2 &= todo;
if (any (i_flag_2))
aa = a(i_flag_2);
qq = q(i_flag_2);
## Initial guess.
x0 = (-log (qq) - gammaln (aa));
## For this case, we invert the upper version.
F = @(q, a, x) q - gammainc (x, a, "upper");
JF = @(a, x) exp (- gammaln (a) - x) .* x .^ (a - 1);
x(i_flag_2) = newton_method (F, JF, qq, aa, x0, tol, maxit);
endif
todo(i_flag_2) = false;
## Case 3: a small.
i_flag_3 = todo & ((a > 0) & (a < 1));
if (any (i_flag_3))
aa = a(i_flag_3);
pp = p(i_flag_3);
## Initial guess
xl = (pp .* gamma (aa + 1)) .^ (1 ./ aa);
x0 = xl;
## For this case, we invert the lower version.
F = @(p, a, x) p - gammainc (x, a, "lower");
JF = @(a, x) - exp (-gammaln (a) - x) .* x .^ (a - 1);
x(i_flag_3) = newton_method (F, JF, pp, aa, x0, tol, maxit);
endif
todo(i_flag_3) = false;
## Case 4: a large.
i_flag_4 = todo;
if (any (i_flag_4))
aa = a(i_flag_4);
qq = q(i_flag_4);
## Initial guess
d = 1 ./ (9 * aa);
t = 1 - d + sqrt (2) * erfcinv (2 * qq) .* sqrt (d);
x0 = aa .* (t .^ 3);
## For this case, we invert the upper version.
F = @(q, a, x) q - gammainc (x, a, "upper");
JF = @(a, x) exp (- gammaln (a) - x + (a - 1) .* log (x));
x(i_flag_4) = newton_method (F, JF, qq, aa, x0, tol, maxit);
endif
## Restore original shape
x = reshape (x, orig_sz);
endfunction
## subfunction: Newton's Method
function x = newton_method (F, JF, y, a, x0, tol, maxit)
l = numel (y);
res = -F (y, a, x0) ./ JF (a, x0);
todo = (abs (res) >= tol * abs (x0));
x = x0;
it = 0;
while (any (todo) && (it++ < maxit))
x(todo) += res(todo);
res(todo) = -F (y(todo), a(todo), x(todo)) ./ JF (a(todo), x(todo));
todo = (abs (res) >= tol * abs (x));
endwhile
x += res;
endfunction
%!test
%! x = [1e-10, 1e-09, 1e-08, 1e-07];
%! a = [2, 3, 4];
%! [x, a] = ndgrid (x, a);
%! xx = gammainc (gammaincinv (x, a), a);
%! assert (xx, x, -3e-14);
%!test
%! x = [1e-10, 1e-09, 1e-08, 1e-07];
%! a = [2, 3, 4];
%! [x, a] = ndgrid (x, a);
%! xx = gammainc (gammaincinv (x, a, "upper"), a, "upper");
%! assert (xx, x, -3e-14);
%!test
%! x = linspace (0, 1)';
%! a = [linspace(0.1, 1, 10), 2:5];
%! [x, a] = ndgrid (x, a);
%! xx = gammainc (gammaincinv (x, a), a);
%! assert (xx, x, -1e-13);
%!test
%! x = linspace (0, 1)';
%! a = [linspace(0.1, 1, 10), 2:5];
%! [x, a] = ndgrid (x, a);
%! xx = gammainc (gammaincinv (x, a, "upper"), a, "upper");
%! assert (xx, x, -1e-13);
%!test <*56453>
%! assert (gammaincinv (1e-15, 1) * 2, 2e-15, -1e-15);
%! assert (gammaincinv (1e-16, 1) * 2, 2e-16, -1e-15);
## Test the conservation of the input class
%!assert (class (gammaincinv (0.5, 1)), "double")
%!assert (class (gammaincinv (single (0.5), 1)), "single")
%!assert (class (gammaincinv (0.5, single (1))), "single")
%!assert (class (gammaincinv (int8 (0), 1)), "double")
%!assert (class (gammaincinv (0.5, int8 (1))), "double")
%!assert (class (gammaincinv (int8 (0), single (1))), "single")
%!assert (class (gammaincinv (single (0.5), int8 (1))), "single")
## Test input validation
%!error <Invalid call> gammaincinv ()
%!error <Invalid call> gammaincinv (1)
%!error <must be of common size or scalars>
%! gammaincinv (ones (2,2), ones (1,2), 1);
%!error <all inputs must be real> gammaincinv (0.5i, 1)
%!error <all inputs must be real> gammaincinv (0, 1i)
%!error <Y must be in the range \[0, 1\]> gammaincinv (-0.1,1)
%!error <Y must be in the range \[0, 1\]> gammaincinv (1.1,1)
%!error <Y must be in the range \[0, 1\]>
%! y = ones (1, 1, 2);
%! y(1,1,2) = -1;
%! gammaincinv (y,1);
%!error <A must be strictly positive> gammaincinv (0.5, 0)
%!error <A must be strictly positive>
%! a = ones (1, 1, 2);
%! a(1,1,2) = 0;
%! gammaincinv (1,a,1);
%!error <invalid value for TAIL> gammaincinv (1,2, "foobar")
|