1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
|
########################################################################
##
## Copyright (C) 2000-2024 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING. If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################
## -*- texinfo -*-
## @deftypefn {} {@var{l} =} legendre (@var{n}, @var{x})
## @deftypefnx {} {@var{l} =} legendre (@var{n}, @var{x}, @var{normalization})
## Compute the associated Legendre function of degree @var{n} and order
## @var{m} = 0 @dots{} @var{n}.
##
## The value @var{n} must be a real non-negative integer.
##
## @var{x} is a vector with real-valued elements in the range [-1, 1].
##
## The optional argument @var{normalization} may be one of @qcode{"unnorm"},
## @qcode{"sch"}, or @qcode{"norm"}. The default if no normalization is given
## is @qcode{"unnorm"}.
##
## When the optional argument @var{normalization} is @qcode{"unnorm"}, compute
## the associated Legendre function of degree @var{n} and order @var{m} and
## return all values for @var{m} = 0 @dots{} @var{n}. The return value has one
## dimension more than @var{x}.
##
## The associated Legendre function of degree @var{n} and order @var{m}:
##
## @tex
## $$
## P^m_n(x) = (-1)^m (1-x^2)^{m/2}{d^m\over {dx^m}}P_n (x)
## $$
## @end tex
## @ifnottex
##
## @example
## @group
## m m 2 m/2 d^m
## P(x) = (-1) * (1-x ) * ---- P(x)
## n dx^m n
## @end group
## @end example
##
## @end ifnottex
##
## @noindent
## with Legendre polynomial of degree @var{n}:
##
## @tex
## $$
## P(x) = {1\over{2^n n!}}\biggl({d^n\over{dx^n}}(x^2 - 1)^n\biggr)
## $$
## @end tex
## @ifnottex
##
## @example
## @group
## 1 d^n 2 n
## P(x) = ------ [----(x - 1) ]
## n 2^n n! dx^n
## @end group
## @end example
##
## @end ifnottex
##
## @noindent
## @code{legendre (3, [-1.0, -0.9, -0.8])} returns the matrix:
##
## @example
## @group
## x | -1.0 | -0.9 | -0.8
## ------------------------------------
## m=0 | -1.00000 | -0.47250 | -0.08000
## m=1 | 0.00000 | -1.99420 | -1.98000
## m=2 | 0.00000 | -2.56500 | -4.32000
## m=3 | 0.00000 | -1.24229 | -3.24000
## @end group
## @end example
##
## When the optional argument @var{normalization} is @qcode{"sch"}, compute
## the Schmidt semi-normalized associated Legendre function. The Schmidt
## semi-normalized associated Legendre function is related to the unnormalized
## Legendre functions by the following:
##
## For Legendre functions of degree @var{n} and order 0:
##
## @tex
## $$
## SP^0_n (x) = P^0_n (x)
## $$
## @end tex
## @ifnottex
##
## @example
## @group
## 0 0
## SP(x) = P(x)
## n n
## @end group
## @end example
##
## @end ifnottex
##
## For Legendre functions of degree n and order m:
##
## @tex
## $$
## SP^m_n (x) = P^m_n (x)(-1)^m\biggl({2(n-m)!\over{(n+m)!}}\biggl)^{0.5}
## $$
## @end tex
## @ifnottex
##
## @example
## @group
## m m m 2(n-m)! 0.5
## SP(x) = P(x) * (-1) * [-------]
## n n (n+m)!
## @end group
## @end example
##
## @end ifnottex
##
## When the optional argument @var{normalization} is @qcode{"norm"}, compute
## the fully normalized associated Legendre function. The fully normalized
## associated Legendre function is related to the unnormalized associated
## Legendre functions by the following:
##
## For Legendre functions of degree @var{n} and order @var{m}
##
## @tex
## $$
## NP^m_n (x) = P^m_n (x)(-1)^m\biggl({(n+0.5)(n-m)!\over{(n+m)!}}\biggl)^{0.5}
## $$
## @end tex
## @ifnottex
##
## @example
## @group
## m m m (n+0.5)(n-m)! 0.5
## NP(x) = P(x) * (-1) * [-------------]
## n n (n+m)!
## @end group
## @end example
##
## @end ifnottex
## @end deftypefn
function retval = legendre (n, x, normalization)
persistent warned_overflow = false;
if (nargin < 2)
print_usage ();
endif
if (! isreal (n) || ! isscalar (n) || n < 0 || n != fix (n))
error ("legendre: N must be a real non-negative integer");
elseif (! isreal (x) || any (x(:) < -1 | x(:) > 1))
error ("legendre: X must be real-valued vector in the range -1 <= X <= 1");
endif
if (nargin == 3)
normalization = lower (normalization);
else
normalization = "unnorm";
endif
unnorm = false;
switch (normalization)
case "unnorm"
scale = 1;
unnorm = true;
case "norm"
scale = sqrt (n+0.5);
case "sch"
scale = sqrt (2);
otherwise
error ('legendre: NORMALIZATION option must be "unnorm", "norm", or "sch"');
endswitch
scale *= ones (size (x));
## Based on the recurrence relation below
## m m m
## (n-m+1) * P (x) = (2*n+1)*x*P (x) - (n+m)*P (x)
## n+1 n n-1
## https://en.wikipedia.org/wiki/Associated_Legendre_polynomials
overflow = false;
retval = zeros ([n+1, size(x)]);
for m = 1:n
lpm1 = scale;
lpm2 = (2*m-1) .* x .* scale;
lpm3 = lpm2;
for k = m+1:n
lpm3a = (2*k-1) .* x .* lpm2;
lpm3b = (k+m-2) .* lpm1;
lpm3 = (lpm3a - lpm3b) / (k-m+1);
lpm1 = lpm2;
lpm2 = lpm3;
if (! warned_overflow)
if ( any (abs (lpm3a) > realmax)
|| any (abs (lpm3b) > realmax)
|| any (abs (lpm3) > realmax))
overflow = true;
endif
endif
endfor
retval(m,:) = lpm3(:);
if (unnorm)
scale *= -(2*m-1);
else # normalization = "sch" or "norm"
scale *= (2*m-1) / sqrt ((n-m+1)*(n+m));
endif
scale .*= sqrt (1-x.^2);
endfor
retval(n+1,:) = scale(:);
if (isvector (x))
## vector case is special
retval = reshape (retval, n + 1, length (x));
endif
if (strcmp (normalization, "sch"))
retval(1,:) ./= sqrt (2);
endif
if (overflow && ! warned_overflow)
warning ("legendre: overflow - results may be unstable for high orders");
warned_overflow = true;
endif
endfunction
%!test
%! result = legendre (3, [-1.0 -0.9 -0.8]);
%! expected = [
%! -1.00000 -0.47250 -0.08000
%! 0.00000 -1.99420 -1.98000
%! 0.00000 -2.56500 -4.32000
%! 0.00000 -1.24229 -3.24000
%! ];
%! assert (result, expected, 1e-5);
%!test
%! result = legendre (3, [-1.0 -0.9 -0.8], "sch");
%! expected = [
%! -1.00000 -0.47250 -0.08000
%! 0.00000 0.81413 0.80833
%! -0.00000 -0.33114 -0.55771
%! 0.00000 0.06547 0.17076
%! ];
%! assert (result, expected, 1e-5);
%!test
%! result = legendre (3, [-1.0 -0.9 -0.8], "norm");
%! expected = [
%! -1.87083 -0.88397 -0.14967
%! 0.00000 1.07699 1.06932
%! -0.00000 -0.43806 -0.73778
%! 0.00000 0.08661 0.22590
%! ];
%! assert (result, expected, 1e-5);
%!test
%! result = legendre (151, 0);
%! ## Don't compare to "-Inf" since it would fail on 64 bit systems.
%! assert (result(end) < -1.7976e308 && all (isfinite (result(1:end-1))));
%!test
%! result = legendre (150, 0);
%! ## This agrees with Matlab's result.
%! assert (result(end), 3.7532741115719e+306, 0.0000000000001e+306);
%!test
%! result = legendre (0, 0:0.1:1);
%! assert (result, full (ones (1,11)));
%!test
%! ## Test matrix input
%! result = legendre (3, [-1,0,1;1,0,-1]);
%! expected(:,:,1) = [-1,1;0,0;0,0;0,0];
%! expected(:,:,2) = [0,0;1.5,1.5;0,0;-15,-15];
%! expected(:,:,3) = [1,-1;0,0;0,0;0,0];
%! assert (result, expected);
%!test
%! result = legendre (3, [-1,0,1;1,0,-1]');
%! expected(:,:,1) = [-1,0,1;0,1.5,0;0,0,0;0,-15,0];
%! expected(:,:,2) = [1,0,-1;0,1.5,0;0,0,0;0,-15,0];
%! assert (result, expected);
## Test input validation
%!error <Invalid call> legendre ()
%!error <Invalid call> legendre (1)
%!error <must be a real non-negative integer> legendre (i, [-1, 0, 1])
%!error <must be a real non-negative integer> legendre ([1, 2], [-1, 0, 1])
%!error <must be a real non-negative integer> legendre (-1, [-1, 0, 1])
%!error <must be a real non-negative integer> legendre (1.1, [-1, 0, 1])
%!error <must be real-valued vector> legendre (1, [-1+i, 0, 1])
%!error <in the range -1 .= X .= 1> legendre (1, [-2, 0, 1])
%!error <in the range -1 .= X .= 1> legendre (1, [-1, 0, 2])
%!error <NORMALIZATION option must be> legendre (1, [-1, 0, 1], "badnorm")
|