1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
|
########################################################################
##
## Copyright (C) 2004-2024 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING. If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################
##
## Original version by Paul Kienzle distributed as free software in the
## public domain.
## -*- texinfo -*-
## @deftypefn {} {@var{y} =} nthroot (@var{x}, @var{n})
##
## Compute the real (non-complex) @var{n}-th root of @var{x}.
##
## @var{x} must have all real entries and @var{n} must be a scalar.
## If @var{n} is an even integer and @var{x} has negative entries then
## @code{nthroot} aborts and issues an error.
##
## Example:
##
## @example
## @group
## nthroot (-1, 3)
## @result{} -1
## (-1) ^ (1 / 3)
## @result{} 0.50000 - 0.86603i
## @end group
## @end example
## @seealso{realsqrt, sqrt, cbrt}
## @end deftypefn
function y = nthroot (x, n)
if (nargin != 2)
print_usage ();
endif
if (iscomplex (x))
error ("nthroot: X must not contain complex values");
endif
if (! isreal (n) || ! isscalar (n) || n == 0)
error ("nthroot: N must be a real nonzero scalar");
endif
if (n == 3)
y = cbrt (x);
elseif (n == -3)
y = 1 ./ cbrt (x);
elseif (n < 0)
y = 1 ./ nthroot (x, -n);
else
## Compute using power.
integer_n = n == fix (n);
if (integer_n && mod (n, 2) == 1)
y = abs (x) .^ (1/n) .* sign (x);
elseif (any (x(:) < 0))
error ("nthroot: N must be an odd integer if X contains negative values");
else
y = x .^ (1/n);
endif
if (integer_n && n > 0 && isfinite (n))
if (isscalar (y) && y == 0)
## Don't apply correction which leads to division by zero (bug #43492)
else
## FIXME: What is this correction for?
y = ((n-1)*y + x ./ (y.^(n-1))) / n;
y = merge (isfinite (y), y, x);
endif
endif
endif
endfunction
%!assert (nthroot (-32, 5), -2)
%!assert (nthroot (81, 4), 3)
%!assert (nthroot (Inf, 4), Inf)
%!assert (nthroot (-Inf, 7), -Inf)
%!assert (nthroot (-Inf, -7), 0)
## This should not generate a division by zero warning
%!test <*43492>
%! warnmsg = lastwarn ();
%! assert (nthroot (0, 2), 0);
%! assert (lastwarn (), warnmsg);
## Test input validation
%!error <Invalid call> nthroot ()
%!error <Invalid call> nthroot (1)
%!error <X must not contain complex values> nthroot (1+j, 2)
%!error <N must be a real nonzero scalar> nthroot (1, i)
%!error <N must be a real nonzero scalar> nthroot (1, [1 2])
%!error <N must be a real nonzero scalar> nthroot (1, 0)
%!error <N must be an odd integer> nthroot (-1, 2)
|