File: sinint.m

package info (click to toggle)
octave 9.4.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 144,300 kB
  • sloc: cpp: 332,784; ansic: 77,239; fortran: 20,963; objc: 9,396; sh: 8,213; yacc: 4,925; lex: 4,389; perl: 1,544; java: 1,366; awk: 1,259; makefile: 648; xml: 189
file content (214 lines) | stat: -rw-r--r-- 5,811 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
########################################################################
##
## Copyright (C) 2017-2024 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################

## -*- texinfo -*-
## @deftypefn {} {@var{y} =} sinint (@var{x})
## Compute the sine integral function:
## @tex
## $$
## {\rm Si} (x) = \int_0^x {\sin (t) \over t} dt
## $$
## @end tex
## @ifnottex
##
## @example
## @group
##            x
##           /
## Si (x) =  | sin (t) / t dt
##           /
##          0
## @end group
## @end example
##
## @end ifnottex
##
## Reference:
## @nospell{M. Abramowitz and I.A. Stegun},
## @cite{Handbook of Mathematical Functions}, 1964.
##
## @seealso{cosint, expint, sin}
## @end deftypefn

function y = sinint (x)

  if (nargin < 1)
    print_usage ();
  endif

  if (! isnumeric (x))
    error ("sinint: X must be numeric");
  endif

  ## Convert to floating point if necessary
  if (isinteger (x))
    x = double (x);
  endif

  ## Convert to column vector
  orig_sz = size (x);
  x = x(:);
  if (iscomplex (x))
    ## Work around reshape which narrows to real (bug #52953)
    x = complex (real (x)(:), imag (x)(:));
  else
    x = x(:);
  endif

  ## Initialize the result
  y = zeros (size (x), class (x));
  tol = eps (class (x));

  todo = true (size (x));

  ## Special values
  y(x == 0) = x(x == 0);    # correctly signed zero
  y(x == Inf) = pi / 2;
  y(x == - Inf) = - pi / 2;

  todo = ((todo) & (x != 0) & (x != Inf) & (x != - Inf));

  ## For values large in modulus we use the relation with expint

  flag_large = abs (x) > 2;
  xx = x(flag_large & todo);
  ii_neg = (real (xx) < 0);
  xx(ii_neg) *= -1;
  ii_conj = (real (xx) == 0) & (imag (xx) < 0);
  xx(ii_conj) = conj (xx(ii_conj));
  yy = -0.5i * (expint (1i * xx) - expint (-1i * xx)) + pi / 2;
  yy(ii_neg) *= -1;
  yy(ii_conj) = conj (yy(ii_conj));
  y(todo & flag_large) = yy;

  ## For values small in modulus we use the series expansion

  todo = (todo) & (! flag_large);
  xx = x(todo);
  ssum = xx;  # First term of the series expansion
  yy = ssum;
  flag_sum = true (nnz (todo), 1);
  it = 0;
  maxit = 300;
  while (any (flag_sum) && (it < maxit))
    ssum .*= - xx .^ 2 * (2 * it + 1) / ((2 * it + 3) ^ 2 * (2 * it + 2));
    yy(flag_sum) += ssum (flag_sum);
    flag_sum = (abs (ssum) >= tol);
    it++;
  endwhile

  y(todo) = yy;

  y = reshape (y, orig_sz);

endfunction


%!assert (sinint (1.1), 1.02868521867373, -5e-15)

%!test
%! x = [2, 3, pi; exp(1), 5, 6];
%! A = sinint (x);
%! B = [1.60541297680269, 1.84865252799947, 1.85193705198247e+00; ...
%!      1.82104026914757, 1.54993124494467, 1.42468755128051e+00];
%! assert (A, B, -5e-15);

## Test exceptional values
%!assert (sinint (0), 0)
%!assert (signbit (sinint (-0)))
%!assert (sinint (Inf), pi/2)
%!assert (sinint (-Inf), -pi/2)
%!assert (isnan (sinint (NaN)))

## Check single data type is preserved
%!assert (class (sinint (single (1))), "single")

## Tests against Maple
%!assert (sinint (1)  ,  0.9460830703671830149414, -2*eps)
%!assert (sinint (-1) , -0.9460830703671830149414, -2*eps)
%!assert (sinint (pi) ,  1.851937051982466170361, -3*eps)
%!assert (sinint (-pi), -1.851937051982466170361, -3*eps)
%!assert (sinint (300),  1.5708810882137495193, -2*eps)
%!assert (sinint (1e4),  1.5708915453859619157, -2*eps)
%!assert (sinint (20i),  1.2807826332028294459e7*1i, -2*eps)

%!test
%! x = (0:4)';
%! y_ex = [0
%!         0.946083070367183015
%!         1.60541297680269485
%!         1.84865252799946826
%!         1.75820313894905306];
%! assert (sinint (x), y_ex, -4*eps);

%!test
%! x = -(0:4)';
%! y_ex = - [0
%!           0.946083070367183015
%!           1.60541297680269485
%!           1.84865252799946826
%!           1.75820313894905306];
%! assert (sinint (x), y_ex, -4*eps);

%!test
%! x = 1i * (0:4).';
%! y_ex = [0
%!         1.05725087537572851*I
%!         2.50156743335497564*I
%!         4.97344047585980680*I
%!         9.81732691123303446*I];
%! assert (sinint (x), y_ex, -4*eps);

%!test
%! x = - 1i * (0:4).';
%! y_ex = - [0
%!           1.05725087537572851*I
%!           2.50156743335497564*I
%!           4.97344047585980680*I
%!           9.81732691123303446*I];
%! assert (sinint (x), y_ex, -4*eps);

%!test
%! % maple:
%! % > A := [1+2*I, -2 + 5*I, 100, 10*I, -1e-4 + 1e-6*I, -20 + I];
%! % > for a in A do evalf(Si(a)) end do;
%! x = [1+2i; -2+5i; 100; 10i; -1e-4 + 1e-6*1i; -20-1i];
%! A = [ 1.6782404878293681180 + 2.0396845546022061045*1i
%!      -18.154174221650281533 + 1.6146414539230479060*1i
%!       1.5622254668890562934
%!       1246.1144901994233444*1i
%!      -0.000099999999944461111128 + 0.99999999833338888972e-6*1i
%!      -1.5386156269726011209 - 0.053969388020443786229*1i ];
%! B = sinint (x);
%! assert (A, B, -3*eps);
%! B = sinint (single (x));
%! assert (A, B, -3*eps ("single"));

## FIXME: Need a test for bug #52953
%#!test <*52953>

## Test input validation
%!error <Invalid call> sinint ()
%!error <X must be numeric> sinint ("1")