1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237
|
########################################################################
##
## Copyright (C) 1989-2024 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING. If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################
## -*- texinfo -*-
## @deftypefn {} {} gallery (@var{name})
## @deftypefnx {} {} gallery (@var{name}, @var{args})
## Create interesting matrices for testing.
##
## @end deftypefn
##
## @deftypefn {} {@var{c} =} gallery ("cauchy", @var{x})
## @deftypefnx {} {@var{c} =} gallery ("cauchy", @var{x}, @var{y})
## Create a Cauchy matrix.
##
## @end deftypefn
##
## @deftypefn {} {@var{c} =} gallery ("chebspec", @var{n})
## @deftypefnx {} {@var{c} =} gallery ("chebspec", @var{n}, @var{k})
## Create a Chebyshev spectral differentiation matrix.
##
## @end deftypefn
##
## @deftypefn {} {@var{c} =} gallery ("chebvand", @var{p})
## @deftypefnx {} {@var{c} =} gallery ("chebvand", @var{m}, @var{p})
## Create a @nospell{Vandermonde}-like matrix for the Chebyshev polynomials.
##
## @end deftypefn
##
## @deftypefn {} {@var{a} =} gallery ("chow", @var{n})
## @deftypefnx {} {@var{a} =} gallery ("chow", @var{n}, @var{alpha})
## @deftypefnx {} {@var{a} =} gallery ("chow", @var{n}, @var{alpha}, @var{delta})
## Create a Chow matrix -- a singular Toeplitz lower Hessenberg matrix.
##
## @end deftypefn
##
## @deftypefn {} {@var{c} =} gallery ("circul", @var{v})
## Create a circulant matrix.
##
## @end deftypefn
##
## @deftypefn {} {@var{a} =} gallery ("clement", @var{n})
## @deftypefnx {} {@var{a} =} gallery ("clement", @var{n}, @var{k})
## Create a tridiagonal matrix with zero diagonal entries.
##
## @end deftypefn
##
## @deftypefn {} {@var{c} =} gallery ("compar", @var{a})
## @deftypefnx {} {@var{c} =} gallery ("compar", @var{a}, @var{k})
## Create a comparison matrix.
##
## @end deftypefn
##
## @deftypefn {} {@var{a} =} gallery ("condex", @var{n})
## @deftypefnx {} {@var{a} =} gallery ("condex", @var{n}, @var{k})
## @deftypefnx {} {@var{a} =} gallery ("condex", @var{n}, @var{k}, @var{theta})
## Create a @nospell{"counterexample"} matrix to a condition estimator.
##
## @end deftypefn
##
## @deftypefn {} {@var{a} =} gallery ("cycol", [@var{m} @var{n}])
## @deftypefnx {} {@var{a} =} gallery ("cycol", @var{n})
## @deftypefnx {} {@var{a} =} gallery (@dots{}, @var{k})
## Create a matrix whose columns repeat cyclically.
##
## @end deftypefn
##
## @deftypefn {} {[@var{c}, @var{d}, @var{e}] =} gallery ("dorr", @var{n})
## @deftypefnx {} {[@var{c}, @var{d}, @var{e}] =} gallery ("dorr", @var{n}, @var{theta})
## @deftypefnx {} {@var{a} =} gallery ("dorr", @dots{})
## Create a diagonally dominant, ill-conditioned, tridiagonal matrix.
##
## @end deftypefn
##
## @deftypefn {} {@var{a} =} gallery ("dramadah", @var{n})
## @deftypefnx {} {@var{a} =} gallery ("dramadah", @var{n}, @var{k})
## Create a (0, 1) matrix whose inverse has large integer entries.
##
## @end deftypefn
##
## @deftypefn {} {@var{a} =} gallery ("fiedler", @var{c})
## Create a symmetric @nospell{Fiedler} matrix.
##
## @end deftypefn
##
## @deftypefn {} {@var{a} =} gallery ("forsythe", @var{n})
## @deftypefnx {} {@var{a} =} gallery ("forsythe", @var{n}, @var{alpha})
## @deftypefnx {} {@var{a} =} gallery ("forsythe", @var{n}, @var{alpha}, @var{lambda})
## Create a @nospell{Forsythe} matrix (a perturbed Jordan block).
##
## @end deftypefn
##
## @deftypefn {} {@var{f} =} gallery ("frank", @var{n})
## @deftypefnx {} {@var{f} =} gallery ("frank", @var{n}, @var{k})
## Create a Frank matrix (ill-conditioned eigenvalues).
##
## @end deftypefn
##
## @deftypefn {} {@var{c} =} gallery ("gcdmat", @var{n})
## Create a greatest common divisor matrix.
##
## @var{c} is an @var{n}-by-@var{n} matrix whose values correspond to the
## greatest common divisor of its coordinate values, i.e., @var{c}(i,j)
## correspond @code{gcd (i, j)}.
## @end deftypefn
##
## @deftypefn {} {@var{a} =} gallery ("gearmat", @var{n})
## @deftypefnx {} {@var{a} =} gallery ("gearmat", @var{n}, @var{i})
## @deftypefnx {} {@var{a} =} gallery ("gearmat", @var{n}, @var{i}, @var{j})
## Create a Gear matrix.
##
## @end deftypefn
##
## @deftypefn {} {@var{g} =} gallery ("grcar", @var{n})
## @deftypefnx {} {@var{g} =} gallery ("grcar", @var{n}, @var{k})
## Create a Toeplitz matrix with sensitive eigenvalues.
##
## @end deftypefn
##
## @deftypefn {} {@var{a} =} gallery ("hanowa", @var{n})
## @deftypefnx {} {@var{a} =} gallery ("hanowa", @var{n}, @var{d})
## Create a matrix whose eigenvalues lie on a vertical line in the complex
## plane.
##
## @end deftypefn
##
## @deftypefn {} {@var{v} =} gallery ("house", @var{x})
## @deftypefnx {} {[@var{v}, @var{beta}] =} gallery ("house", @var{x})
## Create a householder matrix.
##
## @end deftypefn
##
## @deftypefn {} {@var{a} =} gallery ("integerdata", @var{imax}, [@var{M} @var{N} @dots{}], @var{j})
## @deftypefnx {} {@var{a} =} gallery ("integerdata", @var{imax}, @var{M}, @var{N}, @dots{}, @var{j})
## @deftypefnx {} {@var{a} =} gallery ("integerdata", [@var{imin}, @var{imax}], [@var{M} @var{N} @dots{}], @var{j})
## @deftypefnx {} {@var{a} =} gallery ("integerdata", [@var{imin}, @var{imax}], @var{M}, @var{N}, @dots{}, @var{j})
## @deftypefnx {} {@var{a} =} gallery ("integerdata", @dots{}, "@var{class}")
## Create a matrix with random integers in the range [1, @var{imax}].
## If @var{imin} is given then the integers are in the range
## [@var{imin}, @var{imax}].
##
## The second input is a matrix of dimensions describing the size of the
## output. The dimensions can also be input as comma-separated arguments.
##
## The input @var{j} is an integer index in the range [0, 2^32-1]. The values
## of the output matrix are always exactly the same (reproducibility) for a
## given size input and @var{j} index.
##
## The final optional argument determines the class of the resulting matrix.
## Possible values for @var{class}: @qcode{"uint8"}, @qcode{"uint16"},
## @qcode{"uint32"}, @qcode{"int8"}, @qcode{"int16"}, int32", @qcode{"single"},
## @qcode{"double"}. The default is @qcode{"double"}.
##
## @end deftypefn
##
## @deftypefn {} {@var{a} =} gallery ("invhess", @var{x})
## @deftypefnx {} {@var{a} =} gallery ("invhess", @var{x}, @var{y})
## Create the inverse of an upper Hessenberg matrix.
##
## @end deftypefn
##
## @deftypefn {} {@var{a} =} gallery ("invol", @var{n})
## Create an involutory matrix.
##
## @end deftypefn
##
## @deftypefn {} {@var{a} =} gallery ("ipjfact", @var{n})
## @deftypefnx {} {@var{a} =} gallery ("ipjfact", @var{n}, @var{k})
## Create a Hankel matrix with factorial elements.
##
## @end deftypefn
##
## @deftypefn {} {@var{a} =} gallery ("jordbloc", @var{n})
## @deftypefnx {} {@var{a} =} gallery ("jordbloc", @var{n}, @var{lambda})
## Create a Jordan block.
##
## @end deftypefn
##
## @deftypefn {} {@var{u} =} gallery ("kahan", @var{n})
## @deftypefnx {} {@var{u} =} gallery ("kahan", @var{n}, @var{theta})
## @deftypefnx {} {@var{u} =} gallery ("kahan", @var{n}, @var{theta}, @var{pert})
## Create a @nospell{Kahan} matrix (upper trapezoidal).
##
## @end deftypefn
##
## @deftypefn {} {@var{a} =} gallery ("kms", @var{n})
## @deftypefnx {} {@var{a} =} gallery ("kms", @var{n}, @var{rho})
## Create a @nospell{Kac-Murdock-Szego} Toeplitz matrix.
##
## @end deftypefn
##
## @deftypefn {} {@var{b} =} gallery ("krylov", @var{a})
## @deftypefnx {} {@var{b} =} gallery ("krylov", @var{a}, @var{x})
## @deftypefnx {} {@var{b} =} gallery ("krylov", @var{a}, @var{x}, @var{j})
## Create a Krylov matrix.
##
## @end deftypefn
##
## @deftypefn {} {@var{a} =} gallery ("lauchli", @var{n})
## @deftypefnx {} {@var{a} =} gallery ("lauchli", @var{n}, @var{mu})
## Create a @nospell{Lauchli} matrix (rectangular).
##
## @end deftypefn
##
## @deftypefn {} {@var{a} =} gallery ("lehmer", @var{n})
## Create a @nospell{Lehmer} matrix (symmetric positive definite).
##
## @end deftypefn
##
## @deftypefn {} {@var{t} =} gallery ("lesp", @var{n})
## Create a tridiagonal matrix with real, sensitive eigenvalues.
##
## @end deftypefn
##
## @deftypefn {} {@var{a} =} gallery ("lotkin", @var{n})
## Create a @nospell{Lotkin} matrix.
##
## @end deftypefn
##
## @deftypefn {} {@var{a} =} gallery ("minij", @var{n})
## Create a symmetric positive definite matrix MIN(i,j).
##
## @end deftypefn
##
## @deftypefn {} {@var{a} =} gallery ("moler", @var{n})
## @deftypefnx {} {@var{a} =} gallery ("moler", @var{n}, @var{alpha})
## Create a @nospell{Moler} matrix (symmetric positive definite).
##
## @end deftypefn
##
## @deftypefn {} {[@var{a}, @var{t}] =} gallery ("neumann", @var{n})
## Create a singular matrix from the discrete @nospell{Neumann} problem
## (sparse).
##
## @end deftypefn
##
## @deftypefn {} {@var{a} =} gallery ("normaldata", [@var{M} @var{N} @dots{}], @var{j})
## @deftypefnx {} {@var{a} =} gallery ("normaldata", @var{M}, @var{N}, @dots{}, @var{j})
## @deftypefnx {} {@var{a} =} gallery ("normaldata", @dots{}, "@var{class}")
## Create a matrix with random samples from the standard normal distribution
## (mean = 0, std = 1).
##
## The first input is a matrix of dimensions describing the size of the output.
## The dimensions can also be input as comma-separated arguments.
##
## The input @var{j} is an integer index in the range [0, 2^32-1]. The values
## of the output matrix are always exactly the same (reproducibility) for a
## given size input and @var{j} index.
##
## The final optional argument determines the class of the resulting matrix.
## Possible values for @var{class}: @qcode{"single"}, @qcode{"double"}.
## The default is @qcode{"double"}.
##
## @end deftypefn
##
## @deftypefn {} {@var{q} =} gallery ("orthog", @var{n})
## @deftypefnx {} {@var{q} =} gallery ("orthog", @var{n}, @var{k})
## Create orthogonal and nearly orthogonal matrices.
##
## @end deftypefn
##
## @deftypefn {} {@var{a} =} gallery ("parter", @var{n})
## Create a @nospell{Parter} matrix (a Toeplitz matrix with singular values
## near pi).
##
## @end deftypefn
##
## @deftypefn {} {@var{p} =} gallery ("pei", @var{n})
## @deftypefnx {} {@var{p} =} gallery ("pei", @var{n}, @var{alpha})
## Create a Pei matrix.
##
## @end deftypefn
##
## @deftypefn {} {@var{a} =} gallery ("poisson", @var{n})
## Create a block tridiagonal matrix from Poisson's equation (sparse).
##
## @end deftypefn
##
## @deftypefn {} {@var{a} =} gallery ("prolate", @var{n})
## @deftypefnx {} {@var{a} =} gallery ("prolate", @var{n}, @var{w})
## Create a prolate matrix (symmetric, ill-conditioned Toeplitz matrix).
##
## @end deftypefn
##
## @deftypefn {} {@var{h} =} gallery ("randhess", @var{x})
## Create a random, orthogonal upper Hessenberg matrix.
##
## @end deftypefn
##
## @deftypefn {} {@var{a} =} gallery ("rando", @var{n})
## @deftypefnx {} {@var{a} =} gallery ("rando", @var{n}, @var{k})
## Create a random matrix with elements -1, 0 or 1.
##
## @end deftypefn
##
## @deftypefn {} {@var{a} =} gallery ("randsvd", @var{n})
## @deftypefnx {} {@var{a} =} gallery ("randsvd", @var{n}, @var{kappa})
## @deftypefnx {} {@var{a} =} gallery ("randsvd", @var{n}, @var{kappa}, @var{mode})
## @deftypefnx {} {@var{a} =} gallery ("randsvd", @var{n}, @var{kappa}, @var{mode}, @var{kl})
## @deftypefnx {} {@var{a} =} gallery ("randsvd", @var{n}, @var{kappa}, @var{mode}, @var{kl}, @var{ku})
## Create a random matrix with pre-assigned singular values.
##
## @end deftypefn
##
## @deftypefn {} {@var{a} =} gallery ("redheff", @var{n})
## Create a zero and ones matrix of @nospell{Redheffer} associated with the
## Riemann hypothesis.
##
## @end deftypefn
##
## @deftypefn {} {@var{a} =} gallery ("riemann", @var{n})
## Create a matrix associated with the Riemann hypothesis.
##
## @end deftypefn
##
## @deftypefn {} {@var{a} =} gallery ("ris", @var{n})
## Create a symmetric Hankel matrix.
##
## @end deftypefn
##
## @deftypefn {} {@var{a} =} gallery ("smoke", @var{n})
## @deftypefnx {} {@var{a} =} gallery ("smoke", @var{n}, @var{k})
## Create a complex matrix, with a @nospell{"smoke ring"} pseudospectrum.
##
## @end deftypefn
##
## @deftypefn {} {@var{t} =} gallery ("toeppd", @var{n})
## @deftypefnx {} {@var{t} =} gallery ("toeppd", @var{n}, @var{m})
## @deftypefnx {} {@var{t} =} gallery ("toeppd", @var{n}, @var{m}, @var{w})
## @deftypefnx {} {@var{t} =} gallery ("toeppd", @var{n}, @var{m}, @var{w}, @var{theta})
## Create a symmetric positive definite Toeplitz matrix.
##
## @end deftypefn
##
## @deftypefn {} {@var{p} =} gallery ("toeppen", @var{n})
## @deftypefnx {} {@var{p} =} gallery ("toeppen", @var{n}, @var{a})
## @deftypefnx {} {@var{p} =} gallery ("toeppen", @var{n}, @var{a}, @var{b})
## @deftypefnx {} {@var{p} =} gallery ("toeppen", @var{n}, @var{a}, @var{b}, @var{c})
## @deftypefnx {} {@var{p} =} gallery ("toeppen", @var{n}, @var{a}, @var{b}, @var{c}, @var{d})
## @deftypefnx {} {@var{p} =} gallery ("toeppen", @var{n}, @var{a}, @var{b}, @var{c}, @var{d}, @var{e})
## Create a pentadiagonal Toeplitz matrix (sparse).
##
## @end deftypefn
##
## @deftypefn {} {@var{a} =} gallery ("tridiag", @var{x}, @var{y}, @var{z})
## @deftypefnx {} {@var{a} =} gallery ("tridiag", @var{n})
## @deftypefnx {} {@var{a} =} gallery ("tridiag", @var{n}, @var{c}, @var{d}, @var{e})
## Create a tridiagonal matrix (sparse).
##
## @end deftypefn
##
## @deftypefn {} {@var{t} =} gallery ("triw", @var{n})
## @deftypefnx {} {@var{t} =} gallery ("triw", @var{n}, @var{alpha})
## @deftypefnx {} {@var{t} =} gallery ("triw", @var{n}, @var{alpha}, @var{k})
## Create an upper triangular matrix discussed by
## @nospell{Kahan, Golub, and Wilkinson}.
##
## @end deftypefn
##
## @deftypefn {} {@var{a} =} gallery ("uniformdata", [@var{M} @var{N} @dots{}], @var{j})
## @deftypefnx {} {@var{a} =} gallery ("uniformdata", @var{M}, @var{N}, @dots{}, @var{j})
## @deftypefnx {} {@var{a} =} gallery ("uniformdata", @dots{}, "@var{class}")
## Create a matrix with random samples from the standard uniform distribution
## (range [0,1]).
##
## The first input is a matrix of dimensions describing the size of the output.
## The dimensions can also be input as comma-separated arguments.
##
## The input @var{j} is an integer index in the range [0, 2^32-1]. The values
## of the output matrix are always exactly the same (reproducibility) for a
## given size input and @var{j} index.
##
## The final optional argument determines the class of the resulting matrix.
## Possible values for @var{class}: @qcode{"single"}, @qcode{"double"}.
## The default is @qcode{"double"}.
##
## @end deftypefn
##
## @deftypefn {} {@var{a} =} gallery ("wathen", @var{nx}, @var{ny})
## @deftypefnx {} {@var{a} =} gallery ("wathen", @var{nx}, @var{ny}, @var{k})
## Create the @nospell{Wathen} matrix.
##
## @end deftypefn
##
## @deftypefn {} {[@var{a}, @var{b}] =} gallery ("wilk", @var{n})
## Create various specific matrices devised/discussed by Wilkinson.
##
## @end deftypefn
## Code for most of the individual matrices (except binomial, gcdmat,
## integerdata, leslie, normaldata, randcolu, randcorr, randjorth, sampling,
## uniformdata) by Nicholas J. Higham <Nicholas.J.Higham@manchester.ac.uk>
## Adapted for Octave and into single gallery function by Carnë Draug
function varargout = gallery (name, varargin)
if (nargin < 1)
print_usage ();
elseif (! ischar (name))
error ("gallery: NAME must be a string");
endif
## NOTE: there isn't a lot of input check in the individual functions
## that actually build the functions. This is by design. The original
## code by Higham did not perform it and was propagated to Matlab, so
## for compatibility, we also don't make it. For example, arguments
## that behave as switches, and in theory accepting a value of 0 or 1,
## will use a value of 0, for any value other than 1 (only check made
## is if the value is equal to 1). It will often also accept string
## values instead of numeric. Only input check added was where it
## would be causing an error anyway.
## we will always want to return at least 1 output
n_out = nargout;
if (n_out == 0)
n_out = 1;
endif
switch (lower (name))
case "binomial"
error ("gallery: matrix %s not implemented", name);
case "cauchy" , [varargout{1:n_out}] = cauchy (varargin{:});
case "chebspec" , [varargout{1:n_out}] = chebspec (varargin{:});
case "chebvand" , [varargout{1:n_out}] = chebvand (varargin{:});
case "chow" , [varargout{1:n_out}] = chow (varargin{:});
case "circul" , [varargout{1:n_out}] = circul (varargin{:});
case "clement" , [varargout{1:n_out}] = clement (varargin{:});
case "compar" , [varargout{1:n_out}] = compar (varargin{:});
case "condex" , [varargout{1:n_out}] = condex (varargin{:});
case "cycol" , [varargout{1:n_out}] = cycol (varargin{:});
case "dorr" , [varargout{1:n_out}] = dorr (varargin{:});
case "dramadah" , [varargout{1:n_out}] = dramadah (varargin{:});
case "fiedler" , [varargout{1:n_out}] = fiedler (varargin{:});
case "forsythe" , [varargout{1:n_out}] = forsythe (varargin{:});
case "frank" , [varargout{1:n_out}] = frank (varargin{:});
case "gearmat" , [varargout{1:n_out}] = gearmat (varargin{:});
case "gcdmat" , [varargout{1:n_out}] = gcdmat (varargin{:});
case "grcar" , [varargout{1:n_out}] = grcar (varargin{:});
case "hanowa" , [varargout{1:n_out}] = hanowa (varargin{:});
case "house" , [varargout{1:n_out}] = house (varargin{:});
case "integerdata" , [varargout{1:n_out}] = integerdata (varargin{:});
case "invhess" , [varargout{1:n_out}] = invhess (varargin{:});
case "invol" , [varargout{1:n_out}] = invol (varargin{:});
case "ipjfact" , [varargout{1:n_out}] = ipjfact (varargin{:});
case "jordbloc" , [varargout{1:n_out}] = jordbloc (varargin{:});
case "kahan" , [varargout{1:n_out}] = kahan (varargin{:});
case "kms" , [varargout{1:n_out}] = kms (varargin{:});
case "krylov" , [varargout{1:n_out}] = krylov (varargin{:});
case "lauchli" , [varargout{1:n_out}] = lauchli (varargin{:});
case "lehmer" , [varargout{1:n_out}] = lehmer (varargin{:});
case "leslie"
error ("gallery: matrix %s not implemented", name);
case "lesp" , [varargout{1:n_out}] = lesp (varargin{:});
case "lotkin" , [varargout{1:n_out}] = lotkin (varargin{:});
case "minij" , [varargout{1:n_out}] = minij (varargin{:});
case "moler" , [varargout{1:n_out}] = moler (varargin{:});
case "neumann" , [varargout{1:n_out}] = neumann (varargin{:});
case "normaldata" , [varargout{1:n_out}] = normaldata (varargin{:});
case "orthog" , [varargout{1:n_out}] = orthog (varargin{:});
case "parter" , [varargout{1:n_out}] = parter (varargin{:});
case "pei" , [varargout{1:n_out}] = pei (varargin{:});
case "poisson" , [varargout{1:n_out}] = poisson (varargin{:});
case "prolate" , [varargout{1:n_out}] = prolate (varargin{:});
case "randcolu"
error ("gallery: matrix %s not implemented", name);
case "randcorr"
error ("gallery: matrix %s not implemented", name);
case "randhess" , [varargout{1:n_out}] = randhess (varargin{:});
case "randjorth"
error ("gallery: matrix %s not implemented", name);
case "rando" , [varargout{1:n_out}] = rando (varargin{:});
case "randsvd" , [varargout{1:n_out}] = randsvd (varargin{:});
case "redheff" , [varargout{1:n_out}] = redheff (varargin{:});
case "riemann" , [varargout{1:n_out}] = riemann (varargin{:});
case "ris" , [varargout{1:n_out}] = ris (varargin{:});
case "sampling"
error ("gallery: matrix %s not implemented", name);
case "smoke" , [varargout{1:n_out}] = smoke (varargin{:});
case "toeppd" , [varargout{1:n_out}] = toeppd (varargin{:});
case "toeppen" , [varargout{1:n_out}] = toeppen (varargin{:});
case "tridiag" , [varargout{1:n_out}] = tridiag (varargin{:});
case "triw" , [varargout{1:n_out}] = triw (varargin{:});
case "uniformdata" , [varargout{1:n_out}] = uniformdata (varargin{:});
case "wathen" , [varargout{1:n_out}] = wathen (varargin{:});
case "wilk" , [varargout{1:n_out}] = wilk (varargin{:});
otherwise
error ("gallery: unknown matrix with NAME %s", name);
endswitch
endfunction
function C = cauchy (x, y)
## CAUCHY Cauchy matrix.
## C = CAUCHY(X, Y), where X, Y are N-vectors, is the N-by-N matrix
## with C(i,j) = 1/(X(i)+Y(j)). By default, Y = X.
## Special case: if X is a scalar CAUCHY(X) is the same as CAUCHY(1:X).
## Explicit formulas are known for DET(C) (which is nonzero if X and Y
## both have distinct elements) and the elements of INV(C).
## C is totally positive if 0 < X(1) < ... < X(N) and
## 0 < Y(1) < ... < Y(N).
##
## References:
## N.J. Higham, Accuracy and Stability of Numerical Algorithms,
## Society for Industrial and Applied Mathematics, Philadelphia, PA,
## USA, 1996; sec. 26.1.
## D.E. Knuth, The Art of Computer Programming, Volume 1,
## Fundamental Algorithms, second edition, Addison-Wesley, Reading,
## Massachusetts, 1973, p. 36.
## E.E. Tyrtyshnikov, Cauchy-Toeplitz matrices and some applications,
## Linear Algebra and Appl., 149 (1991), pp. 1-18.
## O. Taussky and M. Marcus, Eigenvalues of finite matrices, in
## Survey of Numerical Analysis, J. Todd, ed., McGraw-Hill, New York,
## pp. 279-313, 1962. (States the totally positive property on p. 295.)
if (nargin < 1 || nargin > 2)
error ("gallery: 1 or 2 arguments are required for cauchy matrix");
elseif (! isnumeric (x))
error ("gallery: X must be numeric for cauchy matrix");
elseif (nargin == 2 && ! isnumeric (y))
error ("gallery: Y must be numeric for cauchy matrix");
endif
n = numel (x);
if (isscalar (x) && fix (x) == x)
n = x;
x = 1:n;
elseif (n > 1 && isvector (x))
## do nothing
else
error ("gallery: X be an integer or a vector for cauchy matrix");
endif
if (nargin == 1)
y = x;
endif
## Ensure x and y are column vectors
x = x(:);
y = y(:);
if (numel (x) != numel (y))
error ("gallery: X and Y must be vectors of same length for cauchy matrix");
endif
C = 1 ./ (x + y.');
endfunction
function C = chebspec (n, k = 0)
## CHEBSPEC Chebyshev spectral differentiation matrix.
## C = CHEBSPEC(N, K) is a Chebyshev spectral differentiation
## matrix of order N. K = 0 (the default) or 1.
## For K = 0 ('no boundary conditions'), C is nilpotent, with
## C^N = 0 and it has the null vector ONES(N,1).
## C is similar to a Jordan block of size N with eigenvalue zero.
## For K = 1, C is nonsingular and well-conditioned, and its eigenvalues
## have negative real parts.
## For both K, the computed eigenvector matrix X from EIG is
## ill-conditioned (MESH(REAL(X)) is interesting).
##
## References:
## C. Canuto, M.Y. Hussaini, A. Quarteroni and T.A. Zang, Spectral
## Methods in Fluid Dynamics, Springer-Verlag, Berlin, 1988; p. 69.
## L.N. Trefethen and M.R. Trummer, An instability phenomenon in
## spectral methods, SIAM J. Numer. Anal., 24 (1987), pp. 1008-1023.
## D. Funaro, Computing the inverse of the Chebyshev collocation
## derivative, SIAM J. Sci. Stat. Comput., 9 (1988), pp. 1050-1057.
if (nargin < 1 || nargin > 2)
error ("gallery: 1 to 2 arguments are required for chebspec matrix");
elseif (! isnumeric (n) || ! isscalar (n) || fix (n) != n)
error ("gallery: N must be an integer for chebspec matrix");
elseif (! isnumeric (k) || ! isscalar (k))
error ("gallery: K must be a scalar for chebspec matrix");
endif
## k = 1 case obtained from k = 0 case with one bigger n.
switch (k)
case 0, # do nothing
case 1, n = n + 1;
otherwise
error ("gallery: K should be either 0 or 1 for chebspec matrix");
endswitch
n -= 1;
C = zeros (n+1);
one = ones (n+1, 1);
x = cos ((0:n)' * (pi/n));
d = ones (n+1, 1);
d(1) = 2;
d(n+1) = 2;
## eye(size(C)) on next line avoids div by zero.
C = (d * (one./d)') ./ (x*one'-one*x' + eye (size (C)));
## Now fix diagonal and signs.
C(1,1) = (2*n^2+1)/6;
for i = 2:n+1
if (rem (i, 2) == 0)
C(:,i) = -C(:,i);
C(i,:) = -C(i,:);
endif
if (i < n+1)
C(i,i) = -x(i)/(2*(1-x(i)^2));
else
C(n+1,n+1) = -C(1,1);
endif
endfor
if (k == 1)
C = C(2:n+1,2:n+1);
endif
endfunction
function C = chebvand (m, p)
## CHEBVAND Vandermonde-like matrix for the Chebyshev polynomials.
## C = CHEBVAND(P), where P is a vector, produces the (primal)
## Chebyshev Vandermonde matrix based on the points P,
## i.e., C(i,j) = T_{i-1}(P(j)), where T_{i-1} is the Chebyshev
## polynomial of degree i-1.
## CHEBVAND(M,P) is a rectangular version of CHEBVAND(P) with M rows.
## Special case: If P is a scalar then P equally spaced points on
## [0,1] are used.
##
## Reference:
## N.J. Higham, Stability analysis of algorithms for solving confluent
## Vandermonde-like systems, SIAM J. Matrix Anal. Appl., 11 (1990),
## pp. 23-41.
if (nargin < 1 || nargin > 2)
error ("gallery: 1 or 2 arguments are required for chebvand matrix");
endif
## because the order of the arguments changes if nargin is 1 or 2 ...
if (nargin == 1)
p = m;
endif
n = numel (p);
if (! isnumeric (p))
error ("gallery: P must be numeric for chebvand matrix");
elseif (isscalar (p) && fix (p) == p)
n = p;
p = linspace (0, 1, n);
elseif (n > 1 && isvector (p))
## do nothing
endif
p = p(:).'; # Ensure p is a row vector.
if (nargin == 1)
m = n;
elseif (! isnumeric (m) || ! isscalar (m))
error ("gallery: M must be a scalar for chebvand matrix");
endif
C = ones (m, n);
if (m != 1)
C(2,:) = p;
## Use Chebyshev polynomial recurrence.
for i = 3:m
C(i,:) = 2.*p.*C(i-1,:) - C(i-2,:);
endfor
endif
endfunction
function A = chow (n, alpha = 1, delta = 0)
## CHOW Chow matrix - a singular Toeplitz lower Hessenberg matrix.
## A = CHOW(N, ALPHA, DELTA) is a Toeplitz lower Hessenberg matrix
## A = H(ALPHA) + DELTA*EYE, where H(i,j) = ALPHA^(i-j+1).
## H(ALPHA) has p = FLOOR(N/2) zero eigenvalues, the rest being
## 4*ALPHA*COS( k*PI/(N+2) )^2, k=1:N-p.
## Defaults: ALPHA = 1, DELTA = 0.
##
## References:
## T.S. Chow, A class of Hessenberg matrices with known
## eigenvalues and inverses, SIAM Review, 11 (1969), pp. 391-395.
## G. Fairweather, On the eigenvalues and eigenvectors of a class of
## Hessenberg matrices, SIAM Review, 13 (1971), pp. 220-221.
if (nargin < 1 || nargin > 3)
error ("gallery: 1 to 3 arguments are required for chow matrix");
elseif (! isnumeric (n) || ! isscalar (n) || fix (n) != n)
error ("gallery: N must be an integer for chow matrix");
elseif (! isnumeric (alpha) || ! isscalar (alpha))
error ("gallery: ALPHA must be a scalar for chow matrix");
elseif (! isnumeric (delta) || ! isscalar (delta))
error ("gallery: DELTA must be a scalar for chow matrix");
endif
A = toeplitz (alpha.^(1:n), [alpha 1 zeros(1, n-2)]) + delta * eye (n);
endfunction
function C = circul (v)
## CIRCUL Circulant matrix.
## C = CIRCUL(V) is the circulant matrix whose first row is V.
## (A circulant matrix has the property that each row is obtained
## from the previous one by cyclically permuting the entries one step
## forward; it is a special Toeplitz matrix in which the diagonals
## 'wrap round'.)
## Special case: if V is a scalar then C = CIRCUL(1:V).
## The eigensystem of C (N-by-N) is known explicitly. If t is an Nth
## root of unity, then the inner product of V with W = [1 t t^2 ... t^N]
## is an eigenvalue of C, and W(N:-1:1) is an eigenvector of C.
##
## Reference:
## P.J. Davis, Circulant Matrices, John Wiley, 1977.
if (nargin != 1)
error ("gallery: 1 argument is required for circul matrix");
elseif (! isnumeric (v))
error ("gallery: V must be numeric for circul matrix");
endif
n = numel (v);
if (isscalar (v) && fix (v) == v)
n = v;
v = 1:n;
elseif (n > 1 && isvector (v))
## do nothing
else
error ("gallery: X must be a scalar or a vector for circul matrix");
endif
v = v(:).'; # Make sure v is a row vector
C = toeplitz ([v(1) v(n:-1:2)], v);
endfunction
function A = clement (n, k = 0)
## CLEMENT Clement matrix - tridiagonal with zero diagonal entries.
## CLEMENT(N, K) is a tridiagonal matrix with zero diagonal entries
## and known eigenvalues. It is singular if N is odd. About 64
## percent of the entries of the inverse are zero. The eigenvalues
## are plus and minus the numbers N-1, N-3, N-5, ..., (1 or 0).
## For K = 0 (the default) the matrix is unsymmetric, while for
## K = 1 it is symmetric.
## CLEMENT(N, 1) is diagonally similar to CLEMENT(N).
##
## Similar properties hold for TRIDIAG(X,Y,Z) where Y = ZEROS(N,1).
## The eigenvalues still come in plus/minus pairs but they are not
## known explicitly.
##
## References:
## P.A. Clement, A class of triple-diagonal matrices for test
## purposes, SIAM Review, 1 (1959), pp. 50-52.
## A. Edelman and E. Kostlan, The road from Kac's matrix to Kac's
## random polynomials. In John~G. Lewis, editor, Proceedings of
## the Fifth SIAM Conference on Applied Linear Algebra Society
## for Industrial and Applied Mathematics, Philadelphia, 1994,
## pp. 503-507.
## O. Taussky and J. Todd, Another look at a matrix of Mark Kac,
## Linear Algebra and Appl., 150 (1991), pp. 341-360.
if (nargin < 1 || nargin > 2)
error ("gallery: 1 or 2 arguments are required for clement matrix");
elseif (! isnumeric (n) || ! isscalar (n) || fix (n) != n)
error ("gallery: N must be an integer for clement matrix");
elseif (! isnumeric (k) || ! isscalar (k))
error ("gallery: K must be a numeric scalar for clement matrix");
endif
n -= 1;
x = n:-1:1;
z = 1:n;
if (k == 0)
A = diag (x, -1) + diag (z, 1);
elseif (k == 1)
y = sqrt (x.*z);
A = diag (y, -1) + diag (y, 1);
else
error ("gallery: K must have a value of 0 or 1 for clement matrix");
endif
endfunction
function C = compar (A, k = 0)
## COMP Comparison matrices.
## COMP(A) is DIAG(B) - TRIL(B,-1) - TRIU(B,1), where B = ABS(A).
## COMP(A, 1) is A with each diagonal element replaced by its
## absolute value, and each off-diagonal element replaced by minus
## the absolute value of the largest element in absolute value in
## its row. However, if A is triangular COMP(A, 1) is too.
## COMP(A, 0) is the same as COMP(A).
## COMP(A) is often denoted by M(A) in the literature.
##
## Reference (e.g.):
## N.J. Higham, A survey of condition number estimation for
## triangular matrices, SIAM Review, 29 (1987), pp. 575-596.
if (nargin < 1 || nargin > 2)
error ("gallery: 1 or 2 arguments are required for compar matrix");
elseif (! isnumeric (A) || ndims (A) != 2)
error ("gallery: A must be a 2-D matrix for compar matrix");
elseif (! isnumeric (k) || ! isscalar (k))
error ("gallery: K must be a numeric scalar for compar matrix");
endif
[m, n] = size (A);
p = min (m, n);
if (k == 0)
## This code uses less temporary storage than
## the 'high level' definition above.
C = -abs (A);
for j = 1:p
C(j,j) = abs (A(j,j));
endfor
elseif (k == 1)
C = A';
for j = 1:p
C(k,k) = 0;
endfor
mx = max (abs (C));
C = -mx'*ones (1, n);
for j = 1:p
C(j,j) = abs (A(j,j));
endfor
if (all (A == tril (A))), C = tril (C); endif
if (all (A == triu (A))), C = triu (C); endif
else
error ("gallery: K must have a value of 0 or 1 for compar matrix");
endif
endfunction
function A = condex (n, k = 4, theta = 100)
## CONDEX 'Counterexamples' to matrix condition number estimators.
## CONDEX(N, K, THETA) is a 'counterexample' matrix to a condition
## estimator. It has order N and scalar parameter THETA (default 100).
## If N is not equal to the 'natural' size of the matrix then
## the matrix is padded out with an identity matrix to order N.
## The matrix, its natural size, and the estimator to which it applies
## are specified by K (default K = 4) as follows:
## K = 1: 4-by-4, LINPACK (RCOND)
## K = 2: 3-by-3, LINPACK (RCOND)
## K = 3: arbitrary, LINPACK (RCOND) (independent of THETA)
## K = 4: N >= 4, SONEST (Higham 1988)
## (Note that in practice the K = 4 matrix is not usually a
## counterexample because of the rounding errors in forming it.)
##
## References:
## A.K. Cline and R.K. Rew, A set of counter-examples to three
## condition number estimators, SIAM J. Sci. Stat. Comput.,
## 4 (1983), pp. 602-611.
## N.J. Higham, FORTRAN codes for estimating the one-norm of a real or
## complex matrix, with applications to condition estimation
## (Algorithm 674), ACM Trans. Math. Soft., 14 (1988), pp. 381-396.
if (nargin < 1 || nargin > 3)
error ("gallery: 1 to 3 arguments are required for condex matrix");
elseif (! isnumeric (n) || ! isscalar (n) || fix (n) != n)
error ("gallery: N must be an integer for condex matrix");
elseif (! isnumeric (k) || ! isscalar (k))
error ("gallery: K must be a numeric scalar for condex matrix");
elseif (! isnumeric (theta) || ! isscalar (theta))
error ("gallery: THETA must be a numeric scalar for condex matrix");
endif
if (k == 1) # Cline and Rew (1983), Example B.
A = [1 -1 -2*theta 0
0 1 theta -theta
0 1 1+theta -(theta+1)
0 0 0 theta];
elseif (k == 2) # Cline and Rew (1983), Example C.
A = [1 1-2/theta^2 -2
0 1/theta -1/theta
0 0 1];
elseif (k == 3) # Cline and Rew (1983), Example D.
A = gallery ("triw", n, -1)';
A(n,n) = -1;
elseif (k == 4) # Higham (1988), p. 390.
x = ones (n, 3); # First col is e
x(2:n,2) = zeros (n-1, 1); # Second col is e(1)
## Third col is special vector b in SONEST
x(:, 3) = (-1).^[0:n-1]' .* ( 1 + [0:n-1]'/(n-1) );
Q = orth (x); # Q*Q' is now the orthogonal projector onto span(e(1),e,b)).
P = eye (n) - Q*Q';
A = eye (n) + theta*P;
else
error ("gallery: unknown estimator K '%d' for condex matrix", k);
endif
## Pad out with identity as necessary.
m = columns (A);
if (m < n)
for i = n:-1:m+1
A(i,i) = 1;
endfor
endif
endfunction
function A = cycol (n, k = max (round (n(end)/4), 1))
## CYCOL Matrix whose columns repeat cyclically.
## A = CYCOL([M N], K) is an M-by-N matrix of the form A = B(1:M,1:N)
## where B = [C C C...] and C = RANDN(M, K). Thus A's columns repeat
## cyclically, and A has rank at most K. K need not divide N.
## K defaults to ROUND(N/4).
## CYCOL(N, K), where N is a scalar, is the same as CYCOL([N N], K).
##
## This type of matrix can lead to underflow problems for Gaussian
## elimination: see NA Digest Volume 89, Issue 3 (January 22, 1989).
if (nargin < 1 || nargin > 2)
error ("gallery: 1 or 2 arguments are required for cycol matrix");
elseif (! isnumeric (n) || all (numel (n) != [1 2]) || fix (n) != n)
error ("gallery: N must be a 1 or 2 element integer for cycol matrix");
elseif (! isnumeric (k) || ! isscalar (k))
error ("gallery: K must be a scalar for cycol matrix");
endif
## Parameter n specifies dimension: m-by-n
m = n(1);
n = n(end);
A = randn (m, k);
for i = 2:ceil (n/k)
A = [A A(:,1:k)];
endfor
A = A(:,1:n);
endfunction
function [c, d, e] = dorr (n, theta = 0.01)
## DORR Dorr matrix - diagonally dominant, ill conditioned, tridiagonal.
## [C, D, E] = DORR(N, THETA) returns the vectors defining a row diagonally
## dominant, tridiagonal M-matrix that is ill conditioned for small
## values of the parameter THETA >= 0.
## If only one output parameter is supplied then
## C = FULL(TRIDIAG(C,D,E)), i.e., the matrix iself is returned.
## The columns of INV(C) vary greatly in norm. THETA defaults to 0.01.
## The amount of diagonal dominance is given by (ignoring rounding errors):
## COMP(C)*ONES(N,1) = THETA*(N+1)^2 * [1 0 0 ... 0 1]'.
##
## Reference:
## F.W. Dorr, An example of ill-conditioning in the numerical
## solution of singular perturbation problems, Math. Comp., 25 (1971),
## pp. 271-283.
if (nargin < 1 || nargin > 2)
error ("gallery: 1 or 2 arguments are required for dorr matrix");
elseif (! isscalar (n) || ! isnumeric (n) || fix (n) != n)
error ("gallery: N must be an integer for dorr matrix");
elseif (! isscalar (theta) || ! isnumeric (theta))
error ("gallery: THETA must be a numeric scalar for dorr matrix");
endif
c = zeros (n, 1);
e = c;
d = c;
## All length n for convenience. Make c, e of length n-1 later.
h = 1/(n+1);
m = floor ((n+1)/2);
term = theta/h^2;
i = (1:m)';
c(i) = -term * ones (m, 1);
e(i) = c(i) - (0.5-i*h)/h;
d(i) = -(c(i) + e(i));
i = (m+1:n)';
e(i) = -term * ones (n-m, 1);
c(i) = e(i) + (0.5-i*h)/h;
d(i) = -(c(i) + e(i));
c = c(2:n);
e = e(1:n-1);
if (nargout <= 1)
c = tridiag (c, d, e);
endif
endfunction
function A = dramadah (n, k = 1)
## DRAMADAH A (0,1) matrix whose inverse has large integer entries.
## An anti-Hadamard matrix A is a matrix with elements 0 or 1 for
## which MU(A) := NORM(INV(A),'FRO') is maximal.
## A = DRAMADAH(N, K) is an N-by-N (0,1) matrix for which MU(A) is
## relatively large, although not necessarily maximal.
## Available types (the default is K = 1):
## K = 1: A is Toeplitz, with ABS(DET(A)) = 1, and MU(A) > c(1.75)^N,
## where c is a constant.
## K = 2: A is upper triangular and Toeplitz.
## The inverses of both types have integer entries.
##
## Another interesting (0,1) matrix:
## K = 3: A has maximal determinant among (0,1) lower Hessenberg
## matrices: det(A) = the n'th Fibonacci number. A is Toeplitz.
## The eigenvalues have an interesting distribution in the complex
## plane.
##
## References:
## R.L. Graham and N.J.A. Sloane, Anti-Hadamard matrices,
## Linear Algebra and Appl., 62 (1984), pp. 113-137.
## L. Ching, The maximum determinant of an nxn lower Hessenberg
## (0,1) matrix, Linear Algebra and Appl., 183 (1993), pp. 147-153.
if (nargin < 1 || nargin > 2)
error ("gallery: 1 to 2 arguments are required for dramadah matrix");
elseif (! isnumeric (n) || ! isscalar (n) || fix (n) != n)
error ("gallery: N must be an integer for dramadah matrix");
elseif (! isnumeric (k) || ! isscalar (k))
error ("gallery: K must be a numeric scalar for dramadah matrix");
endif
switch (k)
case (1) # Toeplitz
c = ones (n, 1);
for i = 2:4:n
m = min (1, n-i);
c(i:i+m) = zeros (m+1, 1);
endfor
r = zeros (n, 1);
r(1:4) = [1 1 0 1];
if (n < 4)
r = r(1:n);
endif
A = toeplitz (c, r);
case (2) # Upper triangular and Toeplitz
c = zeros (n, 1);
c(1) = 1;
r = ones (n, 1);
for i= 3:2:n
r(i) = 0;
endfor
A = toeplitz (c, r);
case (3) # Lower Hessenberg
c = ones (n, 1);
for i= 2:2:n
c(i) = 0;
endfor
A = toeplitz (c, [1 1 zeros(1,n-2)]);
otherwise
error ("gallery: unknown K '%d' for dramadah matrix", k);
endswitch
endfunction
function A = fiedler (c)
## FIEDLER Fiedler matrix - symmetric.
## FIEDLER(C), where C is an n-vector, is the n-by-n symmetric
## matrix with elements ABS(C(i)-C(j)).
## Special case: if C is a scalar, then A = FIEDLER(1:C)
## (i.e. A(i,j) = ABS(i-j)).
## Properties:
## FIEDLER(N) has a dominant positive eigenvalue and all the other
## eigenvalues are negative (Szego, 1936).
## Explicit formulas for INV(A) and DET(A) are given by Todd (1977)
## and attributed to Fiedler. These indicate that INV(A) is
## tridiagonal except for nonzero (1,n) and (n,1) elements.
## [I think these formulas are valid only if the elements of
## C are in increasing or decreasing order---NJH.]
##
## References:
## G. Szego, Solution to problem 3705, Amer. Math. Monthly,
## 43 (1936), pp. 246-259.
## J. Todd, Basic Numerical Mathematics, Vol. 2: Numerical Algebra,
## Birkhauser, Basel, and Academic Press, New York, 1977, p. 159.
if (nargin != 1)
error ("gallery: 1 argument is required for fiedler matrix");
elseif (! isnumeric (c))
error ("gallery: C must be numeric for fiedler matrix");
endif
n = numel (c);
if (isscalar (c) && fix (c) == c)
n = c;
c = 1:n;
elseif (n > 1 && isvector (c))
## do nothing
else
error ("gallery: C must be an integer or a vector for fiedler matrix");
endif
c = c(:).'; # Ensure c is a row vector.
A = abs (c - c.');
endfunction
function A = forsythe (n, alpha = sqrt (eps), lambda = 0)
## FORSYTHE Forsythe matrix - a perturbed Jordan block.
## FORSYTHE(N, ALPHA, LAMBDA) is the N-by-N matrix equal to
## JORDBLOC(N, LAMBDA) except it has an ALPHA in the (N,1) position.
## It has the characteristic polynomial
## DET(A-t*EYE) = (LAMBDA-t)^N - (-1)^N ALPHA.
## ALPHA defaults to SQRT(EPS) and LAMBDA to 0.
if (nargin < 1 || nargin > 3)
error ("gallery: 1 to 3 arguments are required for forsythe matrix");
elseif (! isnumeric (n) || ! isscalar (n) || fix (n) != n)
error ("gallery: N must be an integer for forsythe matrix");
elseif (! isnumeric (alpha) || ! isscalar (alpha))
error ("gallery: ALPHA must be a numeric scalar for forsythe matrix");
elseif (! isnumeric (lambda) || ! isscalar (lambda))
error ("gallery: LAMBDA must be a numeric scalar for forsythe matrix");
endif
A = jordbloc (n, lambda);
A(n,1) = alpha;
endfunction
function F = frank (n, k = 0)
## FRANK Frank matrix---ill conditioned eigenvalues.
## F = FRANK(N, K) is the Frank matrix of order N. It is upper
## Hessenberg with determinant 1. K = 0 is the default; if K = 1 the
## elements are reflected about the anti-diagonal (1,N)--(N,1).
## F has all positive eigenvalues and they occur in reciprocal pairs
## (so that 1 is an eigenvalue if N is odd).
## The eigenvalues of F may be obtained in terms of the zeros of the
## Hermite polynomials.
## The FLOOR(N/2) smallest eigenvalues of F are ill conditioned,
## the more so for bigger N.
##
## DET(FRANK(N)') comes out far from 1 for large N---see Frank (1958)
## and Wilkinson (1960) for discussions.
##
## This version incorporates improvements suggested by W. Kahan.
##
## References:
## W.L. Frank, Computing eigenvalues of complex matrices by determinant
## evaluation and by methods of Danilewski and Wielandt, J. Soc.
## Indust. Appl. Math., 6 (1958), pp. 378-392 (see pp. 385, 388).
## G.H. Golub and J.H. Wilkinson, Ill-conditioned eigensystems and the
## computation of the Jordan canonical form, SIAM Review, 18 (1976),
## pp. 578-619 (Section 13).
## H. Rutishauser, On test matrices, Programmation en Mathematiques
## Numeriques, Editions Centre Nat. Recherche Sci., Paris, 165,
## 1966, pp. 349-365. Section 9.
## J.H. Wilkinson, Error analysis of floating-point computation,
## Numer. Math., 2 (1960), pp. 319-340 (Section 8).
## J.H. Wilkinson, The Algebraic Eigenvalue Problem, Oxford University
## Press, 1965 (pp. 92-93).
## The next two references give details of the eigensystem, as does
## Rutishauser (see above).
## P.J. Eberlein, A note on the matrices denoted by B_n, SIAM J. Appl.
## Math., 20 (1971), pp. 87-92.
## J.M. Varah, A generalization of the Frank matrix, SIAM J. Sci. Stat.
## Comput., 7 (1986), pp. 835-839.
if (nargin < 1 || nargin > 2)
error ("gallery: 1 to 2 arguments are required for frank matrix");
elseif (! isnumeric (n) || ! isscalar (n) || fix (n) != n)
error ("gallery: N must be an integer for frank matrix");
elseif (! isnumeric (k) || ! isscalar (k))
error ("gallery: K must be a numeric scalar for frank matrix");
endif
p = n:-1:1;
F = triu (p(ones (n, 1), :) - diag (ones (n-1, 1), -1), -1);
switch (k)
case 0, # do nothing
case 1, F = F(p,p)';
otherwise
error ("gallery: K must have a value of 0 or 1 for frank matrix");
endswitch
endfunction
function c = gcdmat (n)
if (nargin != 1)
error ("gallery: 1 argument is required for gcdmat matrix");
elseif (! isscalar (n) || ! isnumeric (n) || fix (n) != n)
error ("gallery: N must be an integer for gcdmat matrix");
endif
c = gcd (repmat ((1:n)', [1 n]), repmat (1:n, [n 1]));
endfunction
function A = gearmat (n, i = n, j = -n)
## NOTE: this function was named gearm in the original Test Matrix Toolbox
## GEARMAT Gear matrix.
## A = GEARMAT(N,I,J) is the N-by-N matrix with ones on the sub- and
## super-diagonals, SIGN(I) in the (1,ABS(I)) position, SIGN(J)
## in the (N,N+1-ABS(J)) position, and zeros everywhere else.
## Defaults: I = N, j = -N.
## All eigenvalues are of the form 2*COS(a) and the eigenvectors
## are of the form [SIN(w+a), SIN(w+2a), ..., SIN(w+Na)].
## The values of a and w are given in the reference below.
## A can have double and triple eigenvalues and can be defective.
## GEARMAT(N) is singular.
##
## (GEAR is a Simulink function, hence GEARMAT for Gear matrix.)
## Reference:
## C.W. Gear, A simple set of test matrices for eigenvalue programs,
## Math. Comp., 23 (1969), pp. 119-125.
if (nargin < 1 || nargin > 3)
error ("gallery: 1 to 3 arguments are required for gearmat matrix");
elseif (! isnumeric (n) || ! isscalar (n) || fix (n) != n)
error ("gallery: N must be an integer for gearmat matrix");
elseif (! isnumeric (i) || ! isscalar (i) || i == 0 || abs (i) > n)
error ("gallery: I must be a nonzero scalar, and abs (I) <= N for gearmat matrix");
elseif (! isnumeric (j) || ! isscalar (j) || i == 0 || abs (j) > n)
error ("gallery: J must be a nonzero scalar, and abs (J) <= N for gearmat matrix");
endif
A = diag (ones (n-1, 1), -1) + diag (ones (n-1, 1), 1);
A(1, abs (i)) = sign (i);
A(n, n+1 - abs (j)) = sign (j);
endfunction
function G = grcar (n, k = 3)
## GRCAR Grcar matrix - a Toeplitz matrix with sensitive eigenvalues.
## GRCAR(N, K) is an N-by-N matrix with -1s on the
## subdiagonal, 1s on the diagonal, and K superdiagonals of 1s.
## The default is K = 3. The eigenvalues of this matrix form an
## interesting pattern in the complex plane (try PS(GRCAR(32))).
##
## References:
## J.F. Grcar, Operator coefficient methods for linear equations,
## Report SAND89-8691, Sandia National Laboratories, Albuquerque,
## New Mexico, 1989 (Appendix 2).
## N.M. Nachtigal, L. Reichel and L.N. Trefethen, A hybrid GMRES
## algorithm for nonsymmetric linear systems, SIAM J. Matrix Anal.
## Appl., 13 (1992), pp. 796-825.
if (nargin < 1 || nargin > 2)
error ("gallery: 1 to 2 arguments are required for grcar matrix");
elseif (! isnumeric (n) || ! isscalar (n) || fix (n) != n)
error ("gallery: N must be an integer for grcar matrix");
elseif (! isnumeric (k) || ! isscalar (k))
error ("gallery: K must be a numeric scalar for grcar matrix");
endif
G = tril (triu (ones (n)), k) - diag (ones (n-1, 1), -1);
endfunction
function A = hanowa (n, d = -1)
## HANOWA A matrix whose eigenvalues lie on a vertical line in the complex plane.
## HANOWA(N, d) is the N-by-N block 2x2 matrix (thus N = 2M must be even)
## [d*EYE(M) -DIAG(1:M)
## DIAG(1:M) d*EYE(M)]
## It has complex eigenvalues lambda(k) = d +/- k*i (1 <= k <= M).
## Parameter d defaults to -1.
##
## Reference:
## E. Hairer, S.P. Norsett and G. Wanner, Solving Ordinary
## Differential Equations I: Nonstiff Problems, Springer-Verlag,
## Berlin, 1987. (pp. 86-87)
if (nargin < 1 || nargin > 2)
error ("gallery: 1 to 2 arguments are required for hanowa matrix");
elseif (! isnumeric (n) || ! isscalar (n) || fix (n) != n)
error ("gallery: N must be an integer for hanowa matrix");
elseif (rem (n, 2) != 0)
error ("gallery: N must be even for hanowa matrix");
elseif (! isnumeric (d) || ! isscalar (d))
error ("gallery: D must be a numeric scalar for hanowa matrix");
endif
m = n/2;
A = [ d*eye(m) -diag(1:m)
diag(1:m) d*eye(m) ];
endfunction
function [v, beta] = house (x)
## HOUSE Householder matrix.
## If [v, beta] = HOUSE(x) then H = EYE - beta*v*v' is a Householder
## matrix such that Hx = -sign(x(1))*norm(x)*e_1.
## NB: If x = 0 then v = 0, beta = 1 is returned.
## x can be real or complex.
## sign(x) := exp(i*arg(x)) ( = x./abs(x) when x ~= 0).
##
## Theory: (textbook references Golub & Van Loan 1989, 38-43;
## Stewart 1973, 231-234, 262; Wilkinson 1965, 48-50).
## Hx = y: (I - beta*v*v')x = -s*e_1.
## Must have |s| = norm(x), v = x+s*e_1, and
## x'y = x'Hx =(x'Hx)' real => arg(s) = arg(x(1)).
## So take s = sign(x(1))*norm(x) (which avoids cancellation).
## v'v = (x(1)+s)^2 + x(2)^2 + ... + x(n)^2
## = 2*norm(x)*(norm(x) + |x(1)|).
##
## References:
## G.H. Golub and C.F. Van Loan, Matrix Computations, second edition,
## Johns Hopkins University Press, Baltimore, Maryland, 1989.
## G.W. Stewart, Introduction to Matrix Computations, Academic Press,
## New York, 1973,
## J.H. Wilkinson, The Algebraic Eigenvalue Problem, Oxford University
## Press, 1965.
if (nargin != 1)
error ("gallery: 1 argument is required for house matrix");
elseif (! isnumeric (x) || ! isvector (x))
error ("gallery: X must be a vector for house matrix");
endif
## must be a column vector
x = x(:);
s = norm (x) * (sign (x(1)) + (x(1) == 0)); # Modification for sign (0) == 1.
v = x;
if (s == 0)
## Quit if x is the zero vector.
beta = 1;
else
v(1) = v(1) + s;
beta = 1/(s'*v(1)); # NB the conjugated s.
## beta = 1/(abs (s) * (abs (s) +abs(x(1)) would guarantee beta real.
## But beta as above can be non-real (due to rounding) only when x is complex.
endif
endfunction
function A = integerdata (varargin)
if (nargin < 3)
error ("gallery: At least 3 arguments required for integerdata matrix");
endif
if (isnumeric (varargin{end}))
jidx = varargin{end};
svec = [varargin{:}];
varargin(end) = [];
elseif (ischar (varargin{end}))
if (nargin < 4)
error (["gallery: CLASS argument requires 4 inputs " ...
"for integerdata matrix."]);
endif
jidx = varargin{end-1};
svec = [varargin{1:end-1}];
varargin(end-1) = [];
else
error (["gallery: J must be an integer in the range [0, 2^32-1] " ...
"for integerdata matrix"]);
endif
if (! (isnumeric (jidx) && isscalar (jidx)
&& jidx == fix (jidx)
&& jidx >= 0 && jidx <= 0xFFFFFFFF))
error (["gallery: J must be an integer in the range [0, 2^32-1] " ...
"for integerdata matrix"]);
endif
## Save and restore random state. Initialization done so that reproducible
## data is available from gallery depending on the jidx and size vector.
randstate = rand ("state");
unwind_protect
rand ("state", svec);
A = randi (varargin{:});
unwind_protect_cleanup
rand ("state", randstate);
end_unwind_protect
endfunction
function A = invhess (x, y)
## INVHESS Inverse of an upper Hessenberg matrix.
## INVHESS(X, Y), where X is an N-vector and Y an N-1 vector,
## is the matrix whose lower triangle agrees with that of
## ONES(N,1)*X' and whose strict upper triangle agrees with
## that of [1 Y]*ONES(1,N).
## The matrix is nonsingular if X(1) ~= 0 and X(i+1) ~= Y(i)
## for all i, and its inverse is an upper Hessenberg matrix.
## If Y is omitted it defaults to -X(1:N-1).
## Special case: if X is a scalar INVHESS(X) is the same as
## INVHESS(1:X).
##
## References:
## F.N. Valvi and V.S. Geroyannis, Analytic inverses and
## determinants for a class of matrices, IMA Journal of Numerical
## Analysis, 7 (1987), pp. 123-128.
## W.-L. Cao and W.J. Stewart, A note on inverses of Hessenberg-like
## matrices, Linear Algebra and Appl., 76 (1986), pp. 233-240.
## Y. Ikebe, On inverses of Hessenberg matrices, Linear Algebra and
## Appl., 24 (1979), pp. 93-97.
## P. Rozsa, On the inverse of band matrices, Integral Equations and
## Operator Theory, 10 (1987), pp. 82-95.
if (nargin < 1 || nargin > 2)
error ("gallery: 1 to 2 arguments are required for invhess matrix");
elseif (! isnumeric (x))
error ("gallery: X must be numeric for invhess matrix");
endif
if (isscalar (x) && fix (x) == x)
n = x;
x = 1:n;
elseif (! isscalar (x) && isvector (x))
n = numel (x);
else
error ("gallery: X must be an integer scalar, or a vector for invhess matrix");
endif
if (nargin < 2)
y = -x(1:end-1);
elseif (! isvector (y) || numel (y) != numel (x) -1)
error ("gallery: Y must be a vector of length -1 than X for invhess matrix");
endif
x = x(:);
y = y(:);
## FIXME: On next line, z = x'; A = z(ones(n,1),:) would be more efficient.
A = ones (n, 1) * x';
for j = 2:n
A(1:j-1,j) = y(1:j-1);
endfor
endfunction
function A = invol (n)
## INVOL An involutory matrix.
## A = INVOL(N) is an N-by-N involutory (A*A = EYE(N)) and
## ill-conditioned matrix.
## It is a diagonally scaled version of HILB(N).
## NB: B = (EYE(N)-A)/2 and B = (EYE(N)+A)/2 are idempotent (B*B = B).
##
## Reference:
## A.S. Householder and J.A. Carpenter, The singular values
## of involutory and of idempotent matrices, Numer. Math. 5 (1963),
## pp. 234-237.
if (nargin < 1)
error ("gallery: 1 argument is required for invol matrix");
elseif (! isnumeric (n) || ! isscalar (n) || fix (n) != n)
error ("gallery: N must be an integer for invol matrix");
endif
A = hilb (n);
d = -n;
A(:, 1) = d * A(:, 1);
for i = 1:n-1
d = -(n+i)*(n-i)*d/(i*i);
A(i+1,:) = d * A(i+1,:);
endfor
endfunction
function [A, detA] = ipjfact (n, k = 0)
## IPJFACT A Hankel matrix with factorial elements.
## A = IPJFACT(N, K) is the matrix with
## A(i,j) = (i+j)! (K = 0, default)
## A(i,j) = 1/(i+j)! (K = 1)
## Both are Hankel matrices.
## The determinant and inverse are known explicitly.
## If a second output argument is present, d = DET(A) is returned:
## [A, d] = IPJFACT(N, K);
##
## Suggested by P. R. Graves-Morris.
##
## Reference:
## M.J.C. Gover, The explicit inverse of factorial Hankel matrices,
## Dept. of Mathematics, University of Bradford, 1993.
if (nargin < 1 || nargin > 2)
error ("gallery: 1 to 2 arguments are required for ipjfact matrix");
elseif (! isnumeric (n) || ! isscalar (n) || fix (n) != n)
error ("gallery: N must be an integer for ipjfact matrix");
elseif (! isnumeric (k) || ! isscalar (k))
error ("gallery: K must be a numeric scalar for ipjfact matrix");
endif
c = cumprod (2:n+1);
d = cumprod (n+1:2*n) * c(n-1);
A = hankel (c, d);
switch (k)
case 0, # do nothing
case 1, A = ones (n) ./ A;
otherwise
error ("gallery: K must have a value of 0 or 1 for ipjfact matrix");
endswitch
if (nargout == 2)
d = 1;
if (k == 0)
for i = 1:n-1
d *= prod (1:i+1) * prod (1:n-i);
endfor
d *= prod (1:n+1);
elseif (k == 1)
for i = 0:n-1
d *= prod (1:i) / prod (1:n+1+i);
endfor
if (rem (n*(n-1)/2, 2))
d = -d;
endif
else
error ("gallery: K must have a value of 0 or 1 for ipjfact matrix");
endif
detA = d;
endif
endfunction
function J = jordbloc (n, lambda = 1)
## JORDBLOC Jordan block.
## JORDBLOC(N, LAMBDA) is the N-by-N Jordan block with eigenvalue
## LAMBDA. LAMBDA = 1 is the default.
if (nargin < 1 || nargin > 2)
error ("gallery: 1 to 2 arguments are required for jordbloc matrix");
elseif (! isnumeric (n) || ! isscalar (n) || fix (n) != n)
error ("gallery: N must be an integer for jordbloc matrix");
elseif (! isnumeric (lambda) || ! isscalar (lambda))
error ("gallery: LAMBDA must be a numeric scalar for jordbloc matrix");
endif
J = lambda * eye (n) + diag (ones (n-1, 1), 1);
endfunction
function U = kahan (n, theta = 1.2, pert = 25)
## KAHAN Kahan matrix - upper trapezoidal.
## KAHAN(N, THETA) is an upper trapezoidal matrix
## that has some interesting properties regarding estimation of
## condition and rank.
## The matrix is N-by-N unless N is a 2-vector, in which case it
## is N(1)-by-N(2).
## The parameter THETA defaults to 1.2.
## The useful range of THETA is 0 < THETA < PI.
##
## To ensure that the QR factorization with column pivoting does not
## interchange columns in the presence of rounding errors, the diagonal
## is perturbed by PERT*EPS*diag( [N:-1:1] ).
## The default is PERT = 25, which ensures no interchanges for KAHAN(N)
## up to at least N = 90 in IEEE arithmetic.
## KAHAN(N, THETA, PERT) uses the given value of PERT.
##
## The inverse of KAHAN(N, THETA) is known explicitly: see
## Higham (1987, p. 588), for example.
## The diagonal perturbation was suggested by Christian Bischof.
##
## References:
## W. Kahan, Numerical linear algebra, Canadian Math. Bulletin,
## 9 (1966), pp. 757-801.
## N.J. Higham, A survey of condition number estimation for
## triangular matrices, SIAM Review, 29 (1987), pp. 575-596.
if (nargin < 1 || nargin > 3)
error ("gallery: 1 to 3 arguments are required for kahan matrix");
elseif (! isnumeric (n) || all (numel (n) != [1 2]) || fix (n) != n)
error ("gallery: N must be a 1 or 2 element integer for kahan matrix");
elseif (! isnumeric (theta) || ! isscalar (theta))
error ("gallery: THETA must be a numeric scalar for kahan matrix");
elseif (! isnumeric (pert) || ! isscalar (pert))
error ("gallery: PERT must be a numeric scalar for kahan matrix");
endif
## Parameter n specifies dimension: r-by-n
r = n(1);
n = n(end);
s = sin (theta);
c = cos (theta);
U = eye (n) - c * triu (ones (n), 1);
U = diag (s.^[0:n-1]) * U + pert*eps* diag ([n:-1:1]);
if (r > n)
U(r,n) = 0; # Extend to an r-by-n matrix
else
U = U(1:r,:); # Reduce to an r-by-n matrix
endif
endfunction
function A = kms (n, rho = 0.5)
## KMS Kac-Murdock-Szego Toeplitz matrix.
## A = KMS(N, RHO) is the N-by-N Kac-Murdock-Szego Toeplitz matrix with
## A(i,j) = RHO^(ABS((i-j))) (for real RHO).
## If RHO is complex, then the same formula holds except that elements
## below the diagonal are conjugated.
## RHO defaults to 0.5.
## Properties:
## A has an LDL' factorization with
## L = INV(TRIW(N,-RHO,1)'),
## D(i,i) = (1-ABS(RHO)^2)*EYE(N) except D(1,1) = 1.
## A is positive definite if and only if 0 < ABS(RHO) < 1.
## INV(A) is tridiagonal.
##
## Reference:
## W.F. Trench, Numerical solution of the eigenvalue problem
## for Hermitian Toeplitz matrices, SIAM J. Matrix Analysis and Appl.,
## 10 (1989), pp. 135-146 (and see the references therein).
if (nargin < 1 || nargin > 2)
error ("gallery: 1 to 2 arguments are required for lauchli matrix");
elseif (! isnumeric (n) || ! isscalar (n) || fix (n) != n)
error ("gallery: N must be an integer for lauchli matrix");
elseif (! isscalar (rho))
error ("gallery: RHO must be a scalar for lauchli matrix");
endif
A = (1:n)'*ones (1,n);
A = abs (A - A');
A = rho .^ A;
if (imag (rho))
A = conj (tril (A,-1)) + triu (A);
endif
endfunction
function B = krylov (A, x, j)
## KRYLOV Krylov matrix.
## KRYLOV(A, x, j) is the Krylov matrix
## [x, Ax, A^2x, ..., A^(j-1)x],
## where A is an n-by-n matrix and x is an n-vector.
## Defaults: x = ONES(n,1), j = n.
## KRYLOV(n) is the same as KRYLOV(RANDN(n)).
##
## Reference:
## G.H. Golub and C.F. Van Loan, Matrix Computations, second edition,
## Johns Hopkins University Press, Baltimore, Maryland, 1989, p. 369.
if (nargin < 1 || nargin > 3)
error ("gallery: 1 to 3 arguments are required for krylov matrix");
elseif (! isnumeric (A) || ! issquare (A) || ndims (A) != 2)
error ("gallery: A must be a square 2-D matrix for krylov matrix");
endif
n = length (A);
if (isscalar (A))
n = A;
A = randn (n);
endif
if (nargin < 2)
x = ones (n, 1);
elseif (! isvector (x) || numel (x) != n)
error ("gallery: X must be a vector of length equal to A for krylov matrix");
endif
if (nargin < 3)
j = n;
elseif (! isnumeric (j) || ! isscalar (j) || fix (j) != j)
error ("gallery: J must be an integer for krylov matrix");
endif
B = ones (n, j);
B(:,1) = x(:);
for i = 2:j
B(:,i) = A*B(:,i-1);
endfor
endfunction
function A = lauchli (n, mu = sqrt (eps))
## LAUCHLI Lauchli matrix - rectangular.
## LAUCHLI(N, MU) is the (N+1)-by-N matrix [ONES(1,N); MU*EYE(N))].
## It is a well-known example in least squares and other problems
## that indicates the dangers of forming A'*A.
## MU defaults to SQRT(EPS).
##
## Reference:
## P. Lauchli, Jordan-Elimination und Ausgleichung nach
## kleinsten Quadraten, Numer. Math, 3 (1961), pp. 226-240.
if (nargin < 1 || nargin > 2)
error ("gallery: 1 to 2 arguments are required for lauchli matrix");
elseif (! isnumeric (n) || ! isscalar (n) || fix (n) != n)
error ("gallery: N must be an integer for lauchli matrix");
elseif (! isscalar (mu))
error ("gallery: MU must be a scalar for lauchli matrix");
endif
A = [ones(1, n)
mu*eye(n) ];
endfunction
function A = lehmer (n)
## LEHMER Lehmer matrix - symmetric positive definite.
## A = LEHMER(N) is the symmetric positive definite N-by-N matrix with
## A(i,j) = i/j for j >= i.
## A is totally nonnegative. INV(A) is tridiagonal, and explicit
## formulas are known for its entries.
## N <= COND(A) <= 4*N*N.
##
## References:
## M. Newman and J. Todd, The evaluation of matrix inversion
## programs, J. Soc. Indust. Appl. Math., 6 (1958), pp. 466-476.
## Solutions to problem E710 (proposed by D.H. Lehmer): The inverse
## of a matrix, Amer. Math. Monthly, 53 (1946), pp. 534-535.
## J. Todd, Basic Numerical Mathematics, Vol. 2: Numerical Algebra,
## Birkhauser, Basel, and Academic Press, New York, 1977, p. 154.
if (nargin < 1)
error ("gallery: 1 argument is required for lehmer matrix");
elseif (! isnumeric (n) || ! isscalar (n) || fix (n) != n)
error ("gallery: N must be an integer for lehmer matrix");
endif
A = ones (n, 1) * (1:n);
A = A./A';
A = tril (A) + tril (A, -1)';
endfunction
function T = lesp (n)
## LESP A tridiagonal matrix with real, sensitive eigenvalues.
## LESP(N) is an N-by-N matrix whose eigenvalues are real and smoothly
## distributed in the interval approximately [-2*N-3.5, -4.5].
## The sensitivities of the eigenvalues increase exponentially as
## the eigenvalues grow more negative.
## The matrix is similar to the symmetric tridiagonal matrix with
## the same diagonal entries and with off-diagonal entries 1,
## via a similarity transformation with D = diag(1!,2!,...,N!).
##
## References:
## H.W.J. Lenferink and M.N. Spijker, On the use of stability regions in
## the numerical analysis of initial value problems,
## Math. Comp., 57 (1991), pp. 221-237.
## L.N. Trefethen, Pseudospectra of matrices, in Numerical Analysis 1991,
## Proceedings of the 14th Dundee Conference,
## D.F. Griffiths and G.A. Watson, eds, Pitman Research Notes in
## Mathematics, volume 260, Longman Scientific and Technical, Essex,
## UK, 1992, pp. 234-266.
if (nargin < 1)
error ("gallery: 1 argument is required for lesp matrix");
elseif (! isnumeric (n) || ! isscalar (n) || fix (n) != n)
error ("gallery: N must be an integer for lesp matrix");
endif
x = 2:n;
T = full (tridiag (ones (size (x)) ./x, -(2*[x n+1]+1), x));
endfunction
function A = lotkin (n)
## LOTKIN Lotkin matrix.
## A = LOTKIN(N) is the Hilbert matrix with its first row altered to
## all ones. A is unsymmetric, ill-conditioned, and has many negative
## eigenvalues of small magnitude.
## The inverse has integer entries and is known explicitly.
##
## Reference:
## M. Lotkin, A set of test matrices, MTAC, 9 (1955), pp. 153-161.
if (nargin < 1)
error ("gallery: 1 argument is required for lotkin matrix");
elseif (! isnumeric (n) || ! isscalar (n) || fix (n) != n)
error ("gallery: N must be an integer for lotkin matrix");
endif
A = hilb (n);
A(1,:) = ones (1, n);
endfunction
function A = minij (n)
## MINIJ Symmetric positive definite matrix MIN(i,j).
## A = MINIJ(N) is the N-by-N symmetric positive definite matrix with
## A(i,j) = MIN(i,j).
## Properties, variations:
## INV(A) is tridiagonal: it is minus the second difference matrix
## except its (N,N) element is 1.
## 2*A-ONES(N) (Givens' matrix) has tridiagonal inverse and
## eigenvalues .5*sec^2([2r-1)PI/4N], r=1:N.
## (N+1)*ONES(N)-A also has a tridiagonal inverse.
##
## References:
## J. Todd, Basic Numerical Mathematics, Vol. 2: Numerical Algebra,
## Birkhauser, Basel, and Academic Press, New York, 1977, p. 158.
## D.E. Rutherford, Some continuant determinants arising in physics and
## chemistry---II, Proc. Royal Soc. Edin., 63, A (1952), pp. 232-241.
## (For the eigenvalues of Givens' matrix.)
if (nargin < 1)
error ("gallery: 1 argument is required for minij matrix");
elseif (! isnumeric (n) || ! isscalar (n) || fix (n) != n)
error ("gallery: N must be an integer for minij matrix");
endif
A = bsxfun (@min, 1:n, (1:n)');
endfunction
function A = moler (n, alpha = -1)
## MOLER Moler matrix - symmetric positive definite.
## A = MOLER(N, ALPHA) is the symmetric positive definite N-by-N matrix
## U'*U where U = TRIW(N, ALPHA).
## For ALPHA = -1 (the default) A(i,j) = MIN(i,j)-2, A(i,i) = i.
## A has one small eigenvalue.
##
## Nash (1990) attributes the ALPHA = -1 matrix to Moler.
##
## Reference:
## J.C. Nash, Compact Numerical Methods for Computers: Linear
## Algebra and Function Minimisation, second edition, Adam Hilger,
## Bristol, 1990 (Appendix 1).
if (nargin < 1 || nargin > 2)
error ("gallery: 1 to 2 arguments are required for moler matrix");
elseif (! isnumeric (n) || ! isscalar (n) || fix (n) != n)
error ("gallery: N must be an integer for moler matrix");
elseif (! isscalar (alpha))
error ("gallery: ALPHA must be a scalar for moler matrix");
endif
A = triw (n, alpha)' * triw (n, alpha);
endfunction
function [A, T] = neumann (n)
## NEUMANN Singular matrix from the discrete Neumann problem (sparse).
## NEUMANN(N) is the singular, row diagonally dominant matrix resulting
## from discretizing the Neumann problem with the usual five point
## operator on a regular mesh.
## It has a one-dimensional null space with null vector ONES(N,1).
## The dimension N should be a perfect square, or else a 2-vector,
## in which case the dimension of the matrix is N(1)*N(2).
##
## Reference:
## R.J. Plemmons, Regular splittings and the discrete Neumann
## problem, Numer. Math., 25 (1976), pp. 153-161.
if (nargin < 1)
error ("gallery: 1 argument is required for neumann matrix");
elseif (! isnumeric (n) || all (numel (n) != [1 2]) || fix (n) != n)
error ("gallery: N must be a 1 or 2 element integer for neumann matrix");
endif
if (isscalar (n))
m = sqrt (n);
if (m^2 != n)
error ("gallery: N must be a perfect square for neumann matrix");
endif
n(1) = m;
n(2) = m;
endif
T = tridiag (n(1), -1, 2, -1);
T(1,2) = -2;
T(n(1),n(1)-1) = -2;
A = kron (T, eye (n(2))) + kron (eye (n(2)), T);
endfunction
function A = normaldata (varargin)
if (nargin < 2)
error ("gallery: At least 2 arguments required for normaldata matrix");
endif
if (isnumeric (varargin{end}))
jidx = varargin{end};
svec = [varargin{:}];
varargin(end) = [];
elseif (ischar (varargin{end}))
if (nargin < 3)
error (["gallery: CLASS argument requires 3 inputs " ...
"for normaldata matrix."]);
endif
jidx = varargin{end-1};
svec = [varargin{1:end-1}];
varargin(end-1) = [];
else
error (["gallery: J must be an integer in the range [0, 2^32-1] " ...
"for normaldata matrix"]);
endif
if (! (isnumeric (jidx) && isscalar (jidx)
&& jidx == fix (jidx)
&& jidx >= 0 && jidx <= 0xFFFFFFFF))
error (["gallery: J must be an integer in the range [0, 2^32-1] " ...
"for normaldata matrix"]);
endif
## Save and restore random state. Initialization done so that reproducible
## data is available from gallery depending on the jidx and size vector.
randstate = randn ("state");
unwind_protect
randn ("state", svec);
A = randn (varargin{:});
unwind_protect_cleanup
randn ("state", randstate);
end_unwind_protect
endfunction
function Q = orthog (n, k = 1)
## ORTHOG Orthogonal and nearly orthogonal matrices.
## Q = ORTHOG(N, K) selects the K'th type of matrix of order N.
## K > 0 for exactly orthogonal matrices, K < 0 for diagonal scalings of
## orthogonal matrices.
## Available types: (K = 1 is the default)
## K = 1: Q(i,j) = SQRT(2/(n+1)) * SIN( i*j*PI/(n+1) )
## Symmetric eigenvector matrix for second difference matrix.
## K = 2: Q(i,j) = 2/SQRT(2*n+1)) * SIN( 2*i*j*PI/(2*n+1) )
## Symmetric.
## K = 3: Q(r,s) = EXP(2*PI*i*(r-1)*(s-1)/n) / SQRT(n) (i=SQRT(-1))
## Unitary, the Fourier matrix. Q^4 is the identity.
## This is essentially the same matrix as FFT(EYE(N))/SQRT(N)!
## K = 4: Helmert matrix: a permutation of a lower Hessenberg matrix,
## whose first row is ONES(1:N)/SQRT(N).
## K = 5: Q(i,j) = SIN( 2*PI*(i-1)*(j-1)/n ) + COS( 2*PI*(i-1)*(j-1)/n ).
## Symmetric matrix arising in the Hartley transform.
## K = -1: Q(i,j) = COS( (i-1)*(j-1)*PI/(n-1) )
## Chebyshev Vandermonde-like matrix, based on extrema of T(n-1).
## K = -2: Q(i,j) = COS( (i-1)*(j-1/2)*PI/n) )
## Chebyshev Vandermonde-like matrix, based on zeros of T(n).
##
## References:
## N.J. Higham and D.J. Higham, Large growth factors in Gaussian
## elimination with pivoting, SIAM J. Matrix Analysis and Appl.,
## 10 (1989), pp. 155-164.
## P. Morton, On the eigenvectors of Schur's matrix, J. Number Theory,
## 12 (1980), pp. 122-127. (Re. ORTHOG(N, 3))
## H.O. Lancaster, The Helmert Matrices, Amer. Math. Monthly, 72 (1965),
## pp. 4-12.
## D. Bini and P. Favati, On a matrix algebra related to the discrete
## Hartley transform, SIAM J. Matrix Anal. Appl., 14 (1993),
## pp. 500-507.
if (nargin < 1 || nargin > 2)
error ("gallery: 1 to 2 arguments are required for orthog matrix");
elseif (! isnumeric (n) || ! isscalar (n) || fix (n) != n)
error ("gallery: N must be an integer for orthog matrix");
elseif (! isnumeric (k) || ! isscalar (k))
error ("gallery: K must be a numeric scalar for orthog matrix");
endif
switch (k)
case (1)
## E'vectors second difference matrix
m = (1:n)'*(1:n) * (pi/(n+1));
Q = sin (m) * sqrt (2/(n+1));
case (2)
m = (1:n)'*(1:n) * (2*pi/(2*n+1));
Q = sin (m) * (2/ sqrt (2*n+1));
case (3)
## Vandermonde based on roots of unity
m = 0:n-1;
Q = exp (m'*m*2*pi* sqrt (-1) / n) / sqrt (n);
case (4)
## Helmert matrix
Q = tril (ones (n));
Q(1,2:n) = ones (1, n-1);
for i = 2:n
Q(i,i) = -(i-1);
endfor
Q = diag (sqrt ([n 1:n-1] .* [1:n])) \ Q;
case (5)
## Hartley matrix
m = (0:n-1)'*(0:n-1) * (2*pi/n);
Q = (cos (m) + sin (m)) / sqrt (n);
case (-1)
## extrema of T(n-1)
m = (0:n-1)'*(0:n-1) * (pi/(n-1));
Q = cos (m);
case (-2)
## zeros of T(n)
m = (0:n-1)'*(.5:n-.5) * (pi/n);
Q = cos (m);
otherwise
error ("gallery: unknown K '%d' for orthog matrix", k);
endswitch
endfunction
function A = parter (n)
## PARTER Parter matrix - a Toeplitz matrix with singular values near PI.
## PARTER(N) is the matrix with (i,j) element 1/(i-j+0.5).
## It is a Cauchy matrix and a Toeplitz matrix.
##
## At the Second SIAM Conference on Linear Algebra, Raleigh, N.C.,
## 1985, Cleve Moler noted that most of the singular values of
## PARTER(N) are very close to PI. An explanation of the phenomenon
## was given by Parter; see also the paper by Tyrtyshnikov.
##
## References:
## The MathWorks Newsletter, Volume 1, Issue 1, March 1986, page 2.
## S.V. Parter, On the distribution of the singular values of Toeplitz
## matrices, Linear Algebra and Appl., 80 (1986), pp. 115-130.
## E.E. Tyrtyshnikov, Cauchy-Toeplitz matrices and some applications,
## Linear Algebra and Appl., 149 (1991), pp. 1-18.
if (nargin < 1)
error ("gallery: 1 argument is required for parter matrix");
elseif (! isnumeric (n) || ! isscalar (n) || fix (n) != n)
error ("gallery: N must be an integer for parter matrix");
endif
A = cauchy ((1:n) + 0.5, -(1:n));
endfunction
function P = pei (n, alpha = 1)
## PEI Pei matrix.
## PEI(N, ALPHA), where ALPHA is a scalar, is the symmetric matrix
## ALPHA*EYE(N) + ONES(N).
## If ALPHA is omitted then ALPHA = 1 is used.
## The matrix is singular for ALPHA = 0, -N.
##
## Reference:
## M.L. Pei, A test matrix for inversion procedures,
## Comm. ACM, 5 (1962), p. 508.
if (nargin < 1 || nargin > 2)
error ("gallery: 1 to 2 arguments are required for pei matrix");
elseif (! isnumeric (n) || ! isscalar (n) || fix (n) != n)
error ("gallery: N must be an integer for pei matrix");
elseif (! isnumeric (alpha) || ! isscalar (alpha))
error ("gallery: ALPHA must be a scalar for pei matrix");
endif
P = alpha * eye (n) + ones (n);
endfunction
function A = poisson (n)
## POISSON Block tridiagonal matrix from Poisson's equation (sparse).
## POISSON(N) is the block tridiagonal matrix of order N^2
## resulting from discretizing Poisson's equation with the
## 5-point operator on an N-by-N mesh.
##
## Reference:
## G.H. Golub and C.F. Van Loan, Matrix Computations, second edition,
## Johns Hopkins University Press, Baltimore, Maryland, 1989
## (Section 4.5.4).
if (nargin < 1)
error ("gallery: 1 argument is required for poisson matrix");
elseif (! isnumeric (n) || ! isscalar (n) || fix (n) != n)
error ("gallery: N must be an integer for poisson matrix");
endif
S = tridiag (n, -1, 2, -1);
I = speye (n);
A = kron (I, S) + kron (S, I);
endfunction
function A = prolate (n, w = 0.25)
## PROLATE Prolate matrix - symmetric, ill-conditioned Toeplitz matrix.
## A = PROLATE(N, W) is the N-by-N prolate matrix with parameter W.
## It is a symmetric Toeplitz matrix.
## If 0 < W < 0.5 then
## - A is positive definite
## - the eigenvalues of A are distinct, lie in (0, 1), and
## tend to cluster around 0 and 1.
## W defaults to 0.25.
##
## Reference:
## J.M. Varah. The Prolate matrix. Linear Algebra and Appl.,
## 187:269--278, 1993.
if (nargin < 1 || nargin > 2)
error ("gallery: 1 to 2 arguments are required for prolate matrix");
elseif (! isnumeric (n) || ! isscalar (n) || fix (n) != n)
error ("gallery: N must be an integer for prolate matrix");
elseif (! isnumeric (w) || ! isscalar (w))
error ("gallery: W must be a scalar for prolate matrix");
endif
a = zeros (n, 1);
a(1) = 2*w;
a(2:n) = sin (2*pi*w*(1:n-1)) ./ (pi*(1:n-1));
A = toeplitz (a);
endfunction
function H = randhess (x)
## NOTE: this function was named ohess in the original Test Matrix Toolbox
## RANDHESS Random, orthogonal upper Hessenberg matrix.
## H = RANDHESS(N) is an N-by-N real, random, orthogonal
## upper Hessenberg matrix.
## Alternatively, H = RANDHESS(X), where X is an arbitrary real
## N-vector (N > 1) constructs H non-randomly using the elements
## of X as parameters.
## In both cases H is constructed via a product of N-1 Givens rotations.
##
## Note: See Gragg (1986) for how to represent an N-by-N (complex)
## unitary Hessenberg matrix with positive subdiagonal elements in terms
## of 2N-1 real parameters (the Schur parametrization).
## This M-file handles the real case only and is intended simply as a
## convenient way to generate random or non-random orthogonal Hessenberg
## matrices.
##
## Reference:
## W.B. Gragg, The QR algorithm for unitary Hessenberg matrices,
## J. Comp. Appl. Math., 16 (1986), pp. 1-8.
if (nargin < 1)
error ("gallery: 1 argument is required for randhess matrix");
elseif (! isnumeric (x) || ! isreal (x))
error ("gallery: N or X must be numeric real values for randhess matrix");
endif
if (isscalar (x))
n = x;
x = rand (n-1, 1) * 2*pi;
H = eye (n);
H(n,n) = sign (randn);
elseif (isvector (x))
n = numel (x);
H = eye (n);
H(n,n) = sign (x(n)) + (x(n) == 0); # Second term ensures H(n,n) nonzero.
else
error ("gallery: N or X must be a scalar or a vector for randhess matrix");
endif
for i = n:-1:2
## Apply Givens rotation through angle x(i-1).
theta = x(i-1);
c = cos (theta);
s = sin (theta);
H([i-1 i], :) = [ c*H(i-1,:)+s*H(i,:)
-s*H(i-1,:)+c*H(i,:) ];
endfor
endfunction
function A = rando (n, k = 1)
## RANDO Random matrix with elements -1, 0 or 1.
## A = RANDO(N, K) is a random N-by-N matrix with elements from
## one of the following discrete distributions (default K = 1):
## K = 1: A(i,j) = 0 or 1 with equal probability,
## K = 2: A(i,j) = -1 or 1 with equal probability,
## K = 3: A(i,j) = -1, 0 or 1 with equal probability.
## N may be a 2-vector, in which case the matrix is N(1)-by-N(2).
if (nargin < 1 || nargin > 2)
error ("gallery: 1 to 2 arguments are required for rando matrix");
elseif (! isnumeric (n) || all (numel (n) != [1 2]) || fix (n) != n)
error ("gallery: N must be an integer for rando matrix");
elseif (! isnumeric (k) || ! isscalar (k))
error ("gallery: K must be a numeric scalar for smoke matrix");
endif
## Parameter n specifies dimension: m-by-n.
m = n(1);
n = n(end);
switch (k)
case (1), A = floor ( rand(m, n) + 0.5); # {0, 1}
case (2), A = 2*floor ( rand(m, n) + 0.5) -1; # {-1, 1}
case (3), A = round (3*rand(m, n) - 1.5); # {-1, 0, 1}
otherwise
error ("gallery: unknown K '%d' for smoke matrix", k);
endswitch
endfunction
function A = randsvd (n, kappa = sqrt (1/eps), mode = 3, kl = max (n) -1,
ku = kl)
## RANDSVD Random matrix with pre-assigned singular values.
## RANDSVD(N, KAPPA, MODE, KL, KU) is a (banded) random matrix of order N
## with COND(A) = KAPPA and singular values from the distribution MODE.
## N may be a 2-vector, in which case the matrix is N(1)-by-N(2).
## Available types:
## MODE = 1: one large singular value,
## MODE = 2: one small singular value,
## MODE = 3: geometrically distributed singular values,
## MODE = 4: arithmetically distributed singular values,
## MODE = 5: random singular values with unif. dist. logarithm.
## If omitted, MODE defaults to 3, and KAPPA defaults to SQRT(1/EPS).
## If MODE < 0 then the effect is as for ABS(MODE) except that in the
## original matrix of singular values the order of the diagonal entries
## is reversed: small to large instead of large to small.
## KL and KU are the lower and upper bandwidths respectively; if they
## are omitted a full matrix is produced.
## If only KL is present, KU defaults to KL.
## Special case: if KAPPA < 0 then a random full symmetric positive
## definite matrix is produced with COND(A) = -KAPPA and
## eigenvalues distributed according to MODE.
## KL and KU, if present, are ignored.
##
## Reference:
## N.J. Higham, Accuracy and Stability of Numerical Algorithms,
## Society for Industrial and Applied Mathematics, Philadelphia, PA,
## USA, 1996; sec. 26.3.
##
## This routine is similar to the more comprehensive Fortran routine xLATMS
## in the following reference:
## J.W. Demmel and A. McKenney, A test matrix generation suite,
## LAPACK Working Note #9, Courant Institute of Mathematical Sciences,
## New York, 1989.
if (nargin < 1 || nargin > 5)
error ("gallery: 1 to 5 arguments are required for randsvd matrix");
elseif (! isnumeric (n) || all (numel (n) != [1 2]) || fix (n) != n)
error ("gallery: N must be a 1 or 2 element integer vector for randsvd matrix");
elseif (! isnumeric (kappa) || ! isscalar (kappa))
error ("gallery: KAPPA must be a numeric scalar for randsvd matrix");
elseif (abs (kappa) < 1)
error ("gallery: KAPPA must larger than or equal to 1 for randsvd matrix");
elseif (! isnumeric (mode) || ! isscalar (mode))
error ("gallery: MODE must be a numeric scalar for randsvd matrix");
elseif (! isnumeric (kl) || ! isscalar (kl))
error ("gallery: KL must be a numeric scalar for randsvd matrix");
elseif (! isnumeric (ku) || ! isscalar (ku))
error ("gallery: KU must be a numeric scalar for randsvd matrix");
endif
posdef = 0;
if (kappa < 0)
posdef = 1;
kappa = -kappa;
endif
## Parameter n specifies dimension: m-by-n.
m = n(1);
n = n(end);
p = min ([m n]);
## If A will be a vector
if (p == 1)
A = randn (m, n);
A /= norm (A);
return;
endif
## Set up vector sigma of singular values.
switch (abs (mode))
case (1)
sigma = ones (p, 1) ./ kappa;
sigma(1) = 1;
case (2)
sigma = ones (p, 1);
sigma(p) = 1 / kappa;
case (3)
factor = kappa^(-1/(p-1));
sigma = factor.^[0:p-1];
case (4)
sigma = ones (p, 1) - (0:p-1)'/(p-1)*(1-1/kappa);
case (5)
## In this case cond (A) <= kappa.
rand ("uniform");
sigma = exp (-rand (p, 1) * log (kappa));
otherwise
error ("gallery: unknown MODE '%d' for randsvd matrix", mode);
endswitch
## Convert to diagonal matrix of singular values.
if (mode < 0)
sigma = sigma(p:-1:1);
endif
sigma = diag (sigma);
if (posdef)
## handle case where KAPPA was negative
Q = qmult (p);
A = Q' * sigma * Q;
A = (A + A') / 2; # Ensure matrix is symmetric.
return;
endif
if (m != n)
## Expand to m-by-n diagonal matrix
sigma(m, n) = 0;
endif
if (kl == 0 && ku == 0)
## Diagonal matrix requested - nothing more to do.
A = sigma;
else
## A = U*sigma*V, where U, V are random orthogonal matrices from the
## Haar distribution.
A = qmult (sigma');
A = qmult (A');
if (kl < n-1 || ku < n-1)
## Bandwidth reduction
A = bandred (A, kl, ku);
endif
endif
endfunction
function A = redheff (n)
## REDHEFF A (0,1) matrix of Redheffer associated with the Riemann hypothesis.
## A = REDHEFF(N) is an N-by-N matrix of 0s and 1s defined by
## A(i,j) = 1 if j = 1 or if i divides j,
## A(i,j) = 0 otherwise.
## It has N - FLOOR(LOG2(N)) - 1 eigenvalues equal to 1,
## a real eigenvalue (the spectral radius) approximately SQRT(N),
## a negative eigenvalue approximately -SQRT(N),
## and the remaining eigenvalues are provably ``small''.
## Barrett and Jarvis (1992) conjecture that
## ``the small eigenvalues all lie inside the unit circle
## ABS(Z) = 1'',
## and a proof of this conjecture, together with a proof that some
## eigenvalue tends to zero as N tends to infinity, would yield
## a new proof of the prime number theorem.
## The Riemann hypothesis is true if and only if
## DET(A) = O( N^(1/2+epsilon) ) for every epsilon > 0
## ('!' denotes factorial).
## See also RIEMANN.
##
## Reference:
## W.W. Barrett and T.J. Jarvis,
## Spectral Properties of a Matrix of Redheffer,
## Linear Algebra and Appl., 162 (1992), pp. 673-683.
if (nargin < 1)
error ("gallery: 1 argument is required for redheff matrix");
elseif (! isnumeric (n) || ! isscalar (n) || fix (n) != n)
error ("gallery: N must be an integer for redheff matrix");
endif
i = (1:n)' * ones (1, n);
A = ! rem (i', i);
A(:,1) = ones (n, 1);
endfunction
function A = riemann (n)
## RIEMANN A matrix associated with the Riemann hypothesis.
## A = RIEMANN(N) is an N-by-N matrix for which the
## Riemann hypothesis is true if and only if
## DET(A) = O( N! N^(-1/2+epsilon) ) for every epsilon > 0
## ('!' denotes factorial).
## A = B(2:N+1, 2:N+1), where
## B(i,j) = i-1 if i divides j and -1 otherwise.
## Properties include, with M = N+1:
## Each eigenvalue E(i) satisfies ABS(E(i)) <= M - 1/M.
## i <= E(i) <= i+1 with at most M-SQRT(M) exceptions.
## All integers in the interval (M/3, M/2] are eigenvalues.
##
## See also REDHEFF.
##
## Reference:
## F. Roesler, Riemann's hypothesis as an eigenvalue problem,
## Linear Algebra and Appl., 81 (1986), pp. 153-198.
if (nargin < 1)
error ("gallery: 1 argument is required for riemann matrix");
elseif (! isnumeric (n) || ! isscalar (n) || fix (n) != n)
error ("gallery: N must be an integer for riemann matrix");
endif
n += 1;
i = (2:n)' * ones (1, n-1);
j = i';
A = i .* (! rem (j, i)) - ones (n-1);
endfunction
function A = ris (n)
## NOTE: this function was named dingdong in the original Test Matrix Toolbox
## RIS Dingdong matrix - a symmetric Hankel matrix.
## A = RIS(N) is the symmetric N-by-N Hankel matrix with
## A(i,j) = 0.5/(N-i-j+1.5).
## The eigenvalues of A cluster around PI/2 and -PI/2.
##
## Invented by F.N. Ris.
##
## Reference:
## J.C. Nash, Compact Numerical Methods for Computers: Linear
## Algebra and Function Minimisation, second edition, Adam Hilger,
## Bristol, 1990 (Appendix 1).
if (nargin < 1)
error ("gallery: 1 argument is required for ris matrix");
elseif (! isnumeric (n) || ! isscalar (n) || fix (n) != n)
error ("gallery: N must be an integer for ris matrix");
endif
p = -2*(1:n) + (n+1.5);
A = cauchy (p);
endfunction
function A = smoke (n, k = 0)
## SMOKE Smoke matrix - complex, with a 'smoke ring' pseudospectrum.
## SMOKE(N) is an N-by-N matrix with 1s on the
## superdiagonal, 1 in the (N,1) position, and powers of
## roots of unity along the diagonal.
## SMOKE(N, 1) is the same except for a zero (N,1) element.
## The eigenvalues of SMOKE(N, 1) are the N'th roots of unity;
## those of SMOKE(N) are the N'th roots of unity times 2^(1/N).
##
## Try PS(SMOKE(32)). For SMOKE(N, 1) the pseudospectrum looks
## like a sausage folded back on itself.
## GERSH(SMOKE(N, 1)) is interesting.
##
## Reference:
## L. Reichel and L.N. Trefethen, Eigenvalues and pseudo-eigenvalues of
## Toeplitz matrices, Linear Algebra and Appl., 162-164:153-185, 1992.
if (nargin < 1 || nargin > 2)
error ("gallery: 1 to 2 arguments are required for smoke matrix");
elseif (! isnumeric (n) || ! isscalar (n) || fix (n) != n)
error ("gallery: N must be an integer for smoke matrix");
elseif (! isnumeric (n) || ! isscalar (n))
error ("gallery: K must be a numeric scalar for smoke matrix");
endif
w = exp (2*pi*i/n);
A = diag ( [w.^(1:n-1) 1] ) + diag (ones (n-1,1), 1);
switch (k)
case 0, A(n,1) = 1;
case 1, # do nothing
otherwise,
error ("gallery: K must have a value of 0 or 1 for smoke matrix");
endswitch
endfunction
function T = toeppd (n, m = n, w = rand (m,1), theta = rand (m,1))
## NOTE: this function was named pdtoep in the original Test Matrix Toolbox
## TOEPPD Symmetric positive definite Toeplitz matrix.
## TOEPPD(N, M, W, THETA) is an N-by-N symmetric positive (semi-)
## definite (SPD) Toeplitz matrix, comprised of the sum of M rank 2
## (or, for certain THETA, rank 1) SPD Toeplitz matrices.
## Specifically,
## T = W(1)*T(THETA(1)) + ... + W(M)*T(THETA(M)),
## where T(THETA(k)) has (i,j) element COS(2*PI*THETA(k)*(i-j)).
## Defaults: M = N, W = RAND(M,1), THETA = RAND(M,1).
##
## Reference:
## G. Cybenko and C.F. Van Loan, Computing the minimum eigenvalue of
## a symmetric positive definite Toeplitz matrix, SIAM J. Sci. Stat.
## Comput., 7 (1986), pp. 123-131.
if (nargin < 1 || nargin > 4)
error ("gallery: 1 to 4 arguments are required for toeppd matrix");
elseif (! isnumeric (n) || ! isscalar (n) || fix (n) != n)
error ("gallery: N must be a numeric integer for toeppd matrix");
elseif (! isnumeric (m) || ! isscalar (m) || fix (m) != m)
error ("gallery: M must be a numeric integer for toeppd matrix");
elseif (numel (w) != m || numel (theta) != m)
error ("gallery: W and THETA must be vectors of length M for toeppd matrix");
endif
T = zeros (n);
E = 2*pi * ((1:n)' * ones (1, n) - ones (n, 1) * (1:n));
for i = 1:m
T += w(i) * cos (theta(i)*E);
endfor
endfunction
function P = toeppen (n, a = 1, b = -10, c = 0, d = 10, e = 1)
## NOTE: this function was named pentoep in the original Test Matrix Toolbox
## TOEPPEN Pentadiagonal Toeplitz matrix (sparse).
## P = TOEPPEN(N, A, B, C, D, E) is the N-by-N pentadiagonal
## Toeplitz matrix with diagonals composed of the numbers
## A =: P(3,1), B =: P(2,1), C =: P(1,1), D =: P(1,2), E =: P(1,3).
## Default: (A,B,C,D,E) = (1,-10,0,10,1) (a matrix of Rutishauser).
## This matrix has eigenvalues lying approximately on
## the line segment 2*cos(2*t) + 20*i*sin(t).
##
## Interesting plots are
## PS(FULL(TOEPPEN(32,0,1,0,0,1/4))) - 'triangle'
## PS(FULL(TOEPPEN(32,0,1/2,0,0,1))) - 'propeller'
## PS(FULL(TOEPPEN(32,0,1/2,1,1,1))) - 'fish'
##
## References:
## R.M. Beam and R.F. Warming, The asymptotic spectra of
## banded Toeplitz and quasi-Toeplitz matrices, SIAM J. Sci.
## Comput. 14 (4), 1993, pp. 971-1006.
## H. Rutishauser, On test matrices, Programmation en Mathematiques
## Numeriques, Editions Centre Nat. Recherche Sci., Paris, 165,
## 1966, pp. 349-365.
if (nargin < 1 || nargin > 6)
error ("gallery: 1 to 6 arguments are required for toeppen matrix");
elseif (! isnumeric (n) || ! isscalar (n) || fix (n) != n)
error ("gallery: N must be a numeric integer for toeppen matrix");
elseif (any (! cellfun ("isnumeric", {a b c d e}))
|| any (cellfun ("numel", {a b c d e}) != 1))
error ("gallery: A, B, C, D and E must be numeric scalars for toeppen matrix");
endif
P = spdiags ([a*ones(n,1) b*ones(n,1) c*ones(n,1) d*ones(n,1) e*ones(n,1)],
-2:2, n, n);
endfunction
function T = tridiag (n, x = -1, y = 2, z = -1)
## TRIDIAG Tridiagonal matrix (sparse).
## TRIDIAG(X, Y, Z) is the tridiagonal matrix with subdiagonal X,
## diagonal Y, and superdiagonal Z.
## X and Z must be vectors of dimension one less than Y.
## Alternatively TRIDIAG(N, C, D, E), where C, D, and E are all
## scalars, yields the Toeplitz tridiagonal matrix of order N
## with subdiagonal elements C, diagonal elements D, and superdiagonal
## elements E. This matrix has eigenvalues (Todd 1977)
## D + 2*SQRT(C*E)*COS(k*PI/(N+1)), k=1:N.
## TRIDIAG(N) is the same as TRIDIAG(N,-1,2,-1), which is
## a symmetric positive definite M-matrix (the negative of the
## second difference matrix).
##
## References:
## J. Todd, Basic Numerical Mathematics, Vol. 2: Numerical Algebra,
## Birkhauser, Basel, and Academic Press, New York, 1977, p. 155.
## D.E. Rutherford, Some continuant determinants arising in physics and
## chemistry---II, Proc. Royal Soc. Edin., 63, A (1952), pp. 232-241.
if (nargin != 1 && nargin != 3 && nargin != 4)
error ("gallery: 1, 3, or 4 arguments are required for tridiag matrix");
elseif (nargin == 3)
z = y;
y = x;
x = n;
endif
## Force column vectors
x = x(:);
y = y(:);
z = z(:);
if (isscalar (x) && isscalar (y) && isscalar (z))
x *= ones (n-1, 1);
z *= ones (n-1, 1);
y *= ones (n, 1);
elseif (numel (y) != numel (x) + 1)
error ("gallery: X must have one element less than Y for tridiag matrix");
elseif (numel (y) != numel (z) + 1)
error ("gallery: Z must have one element less than Y for tridiag matrix");
endif
## T = diag (x, -1) + diag (y) + diag (z, 1); # For non-sparse matrix.
n = numel (y);
T = spdiags ([[x;0] y [0;z]], -1:1, n, n);
endfunction
function t = triw (n, alpha = -1, k = n(end) - 1)
## TRIW Upper triangular matrix discussed by Wilkinson and others.
## TRIW(N, ALPHA, K) is the upper triangular matrix with ones on
## the diagonal and ALPHAs on the first K >= 0 superdiagonals.
## N may be a 2-vector, in which case the matrix is N(1)-by-N(2) and
## upper trapezoidal.
## Defaults: ALPHA = -1,
## K = N - 1 (full upper triangle).
## TRIW(N) is a matrix discussed by Kahan, Golub and Wilkinson.
##
## Ostrowski (1954) shows that
## COND(TRIW(N,2)) = COT(PI/(4*N))^2,
## and for large ABS(ALPHA),
## COND(TRIW(N,ALPHA)) is approximately ABS(ALPHA)^N*SIN(PI/(4*N-2)).
##
## Adding -2^(2-N) to the (N,1) element makes TRIW(N) singular,
## as does adding -2^(1-N) to all elements in the first column.
##
## References:
## G.H. Golub and J.H. Wilkinson, Ill-conditioned eigensystems and the
## computation of the Jordan canonical form, SIAM Review,
## 18(4), 1976, pp. 578-619.
## W. Kahan, Numerical linear algebra, Canadian Math. Bulletin,
## 9 (1966), pp. 757-801.
## A.M. Ostrowski, On the spectrum of a one-parametric family of
## matrices, J. Reine Angew. Math., 193 (3/4), 1954, pp. 143-160.
## J.H. Wilkinson, Singular-value decomposition---basic aspects,
## in D.A.H. Jacobs, ed., Numerical Software---Needs and Availability,
## Academic Press, London, 1978, pp. 109-135.
if (nargin < 1 || nargin > 3)
error ("gallery: 1 to 3 arguments are required for triw matrix");
elseif (! isnumeric (n) || all (numel (n) != [1 2]))
error ("gallery: N must be a 1 or 2 elements vector for triw matrix");
elseif (! isscalar (alpha))
error ("gallery: ALPHA must be a scalar for triw matrix");
elseif (! isscalar (k) || ! isnumeric (k) || fix (k) != k || k < 0)
error ("gallery: K must be a numeric integer >= 0 for triw matrix");
endif
m = n(1); # Parameter n specifies dimension: m-by-n.
n = n(end);
t = tril (eye (m, n) + alpha * triu (ones (m, n), 1), k);
endfunction
function A = uniformdata (varargin)
if (nargin < 2)
error ("gallery: At least 2 arguments required for uniformdata matrix");
endif
if (isnumeric (varargin{end}))
jidx = varargin{end};
svec = [varargin{:}];
varargin(end) = [];
elseif (ischar (varargin{end}))
if (nargin < 3)
error (["gallery: CLASS argument requires 3 inputs " ...
"for uniformdata matrix."]);
endif
jidx = varargin{end-1};
svec = [varargin{1:end-1}];
varargin(end-1) = [];
else
error (["gallery: J must be an integer in the range [0, 2^32-1] " ...
"for uniformdata matrix"]);
endif
if (! (isnumeric (jidx) && isscalar (jidx)
&& jidx == fix (jidx)
&& jidx >= 0 && jidx <= 0xFFFFFFFF))
error (["gallery: J must be an integer in the range [0, 2^32-1] " ...
"for uniformdata matrix"]);
endif
## Save and restore random state. Initialization done so that reproducible
## data is available from gallery depending on the jidx and size vector.
randstate = rand ("state");
unwind_protect
rand ("state", svec);
A = rand (varargin{:});
unwind_protect_cleanup
rand ("state", randstate);
end_unwind_protect
endfunction
function A = wathen (nx, ny, k = 0)
## WATHEN returns the Wathen matrix.
##
## Discussion:
##
## The Wathen matrix is a finite element matrix which is sparse.
##
## The entries of the matrix depend in part on a physical quantity
## related to density. That density is here assigned random values between
## 0 and 100.
##
## A = WATHEN ( NX, NY ) is a sparse random N-by-N finite element matrix
## where N = 3*NX*NY + 2*NX + 2*NY + 1.
##
## A is the consistent mass matrix for a regular NX-by-NY
## grid of 8-node (serendipity) elements in 2 space dimensions.
##
## Here is an illustration for NX = 3, NX = 2:
##
## 23-24-25-26-27-28-29
## | | | |
## 19 20 21 22
## | | | |
## 12-13-14-15-16-17-18
## | | | |
## 8 9 10 11
## | | | |
## 1--2--3--4--5--6--7
##
## For this example, the total number of nodes is, as expected,
##
## N = 3 * 3 * 2 + 2 * 2 + 2 * 3 + 1 = 29.
##
## A is symmetric positive definite for any (positive) values of
## the density, RHO(NX,NY), which is chosen randomly in this routine.
##
## In particular, if D = DIAG(DIAG(A)), then
## 0.25 <= EIG(INV(D)*A) <= 4.5
## for any positive integers NX and NY and any densities RHO(NX,NY).
##
## A = WATHEN ( NX, NY, 1 ) returns the diagonally scaled matrix.
##
## Modified:
##
## 17 September 2007
##
## Author:
##
## Nicholas Higham
##
## Reference:
##
## Nicholas Higham,
## Algorithm 694: A Collection of Test Matrices in MATLAB,
## ACM Transactions on Mathematical Software,
## Volume 17, Number 3, September 1991, pages 289-305.
##
## Andrew Wathen,
## Realistic eigenvalue bounds for the Galerkin mass matrix,
## IMA Journal of Numerical Analysis,
## Volume 7, 1987, pages 449-457.
##
## Parameters:
##
## Input, integer NX, NY, the number of elements in the X and Y directions
## of the finite element grid. NX and NY must each be at least 1.
##
## Optional input, integer K, is used to request that the diagonally scaled
## version of the matrix be returned. This happens if K is specified with
## the value 1.
##
## Output, sparse real A(N,N), the matrix. The dimension N is determined by
## NX and NY, as described above. A is stored in the MATLAB sparse matrix
## format.
if (nargin < 2 || nargin > 3)
error ("gallery: 2 or 3 arguments are required for wathen matrix");
elseif (! isnumeric (nx) || ! isscalar (nx) || nx < 1)
error ("gallery: NX must be a positive scalar for wathen matrix");
elseif (! isnumeric (ny) || ! isscalar (ny) || ny < 1)
error ("gallery: NY must be a positive scalar for wathen matrix");
elseif (! isscalar (k))
error ("gallery: K must be a scalar for wathen matrix");
endif
e1 = [ 6 -6 2 -8
-6 32 -6 20
2 -6 6 -6
-8 20 -6 32 ];
e2 = [ 3 -8 2 -6
-8 16 -8 20
2 -8 3 -8
-6 20 -8 16 ];
e = [ e1 e2
e2' e1] / 45;
n = 3*nx*ny + 2*nx + 2*ny + 1;
A = sparse (n, n);
rho = 100 * rand (nx, ny);
for j = 1:ny
for i = 1:nx
##
## For the element (I,J), determine the indices of the 8 nodes.
##
nn(1) = 3*j*nx + 2*i + 2*j + 1;
nn(2) = nn(1) - 1;
nn(3) = nn(2) - 1;
nn(4) = (3*j - 1) * nx + 2*j + i - 1;
nn(5) = 3 * (j-1) * nx + 2*i + 2*j - 3;
nn(6) = nn(5) + 1;
nn(7) = nn(6) + 1;
nn(8) = nn(4) + 1;
em = e * rho(i,j);
for krow = 1:8
for kcol = 1:8
A(nn(krow),nn(kcol)) = A(nn(krow),nn(kcol)) + em(krow,kcol);
endfor
endfor
endfor
endfor
## If requested, return A with diagonal scaling.
if (k)
A = diag (diag (A)) \ A;
endif
endfunction
function [A, b] = wilk (n)
## WILK Various specific matrices devised/discussed by Wilkinson.
## [A, b] = WILK(N) is the matrix or system of order N.
## N = 3: upper triangular system Ux=b illustrating inaccurate solution.
## N = 4: lower triangular system Lx=b, ill-conditioned.
## N = 5: HILB(6)(1:5,2:6)*1.8144. Symmetric positive definite.
## N = 21: W21+, tridiagonal. Eigenvalue problem.
##
## References:
## J.H. Wilkinson, Error analysis of direct methods of matrix inversion,
## J. Assoc. Comput. Mach., 8 (1961), pp. 281-330.
## J.H. Wilkinson, Rounding Errors in Algebraic Processes, Notes on Applied
## Science No. 32, Her Majesty's Stationery Office, London, 1963.
## J.H. Wilkinson, The Algebraic Eigenvalue Problem, Oxford University
## Press, 1965.
if (nargin < 1)
error ("gallery: 1 argument is required for wilk matrix");
elseif (! isnumeric (n) || ! isscalar (n))
error ("gallery: N must be a numeric scalar for wilk matrix");
endif
if (n == 3)
## Wilkinson (1961) p.323.
A = [ 1e-10 0.9 -0.4
0 0.9 -0.4
0 0 1e-10 ];
b = [ 0
0
1];
elseif (n == 4)
## Wilkinson (1963) p.105.
A = [0.9143e-4 0 0 0
0.8762 0.7156e-4 0 0
0.7943 0.8143 0.9504e-4 0
0.8017 0.6123 0.7165 0.7123e-4];
b = [0.6524
0.3127
0.4186
0.7853];
elseif (n == 5)
## Wilkinson (1965), p.234.
A = hilb (6);
A = A(1:5, 2:6) * 1.8144;
elseif (n == 21)
## Wilkinson (1965), p.308.
E = diag (ones (n-1, 1), 1);
m = (n-1)/2;
A = diag (abs (-m:m)) + E + E';
else
error ("gallery: unknown N '%d' for wilk matrix", n);
endif
endfunction
## NOTE: bandred is part of the Test Matrix Toolbox and is used by randsvd()
function A = bandred (A, kl, ku)
## BANDRED Band reduction by two-sided unitary transformations.
## B = BANDRED(A, KL, KU) is a matrix unitarily equivalent to A
## with lower bandwidth KL and upper bandwidth KU
## (i.e. B(i,j) = 0 if i > j+KL or j > i+KU).
## The reduction is performed using Householder transformations.
## If KU is omitted it defaults to KL.
##
## Called by RANDSVD.
## This is a 'standard' reduction. Cf. reduction to bidiagonal form
## prior to computing the SVD. This code is a little wasteful in that
## it computes certain elements which are immediately set to zero!
##
## Reference:
## G.H. Golub and C.F. Van Loan, Matrix Computations, second edition,
## Johns Hopkins University Press, Baltimore, Maryland, 1989.
## Section 5.4.3.
## Check for special case where order of left/right transformations matters.
## Easiest approach is to work on the transpose, flipping back at the end.
flip = false;
if (ku == 0)
flip = true;
A = A';
[ku, kl] = deal (kl, ku);
endif
[m, n] = size (A);
for j = 1:min (min (m, n), max (m-kl-1, n-ku-1))
if (j+kl+1 <= m)
[v, beta] = house (A(j+kl:m,j));
temp = A(j+kl:m,j:n);
A(j+kl:m,j:n) = temp - beta*v*(v'*temp);
A(j+kl+1:m,j) = zeros (m-j-kl, 1);
endif
if (j+ku+1 <= n)
[v, beta] = house (A(j,j+ku:n)');
temp = A(j:m,j+ku:n);
A(j:m,j+ku:n) = temp - beta*(temp*v)*v';
A(j,j+ku+1:n) = zeros (1, n-j-ku);
endif
endfor
if (flip)
A = A';
endif
endfunction
## NOTE: qmult is part of the Test Matrix Toolbox and is used by randsvd()
function B = qmult (A)
## QMULT Pre-multiply by random orthogonal matrix.
## QMULT(A) is Q*A where Q is a random real orthogonal matrix from
## the Haar distribution, of dimension the number of rows in A.
## Special case: if A is a scalar then QMULT(A) is the same as
## QMULT(EYE(A)).
##
## Called by RANDSVD.
##
## Reference:
## G.W. Stewart, The efficient generation of random
## orthogonal matrices with an application to condition estimators,
## SIAM J. Numer. Anal., 17 (1980), 403-409.
[n, m] = size (A);
## Handle scalar A
if (isscalar (A))
n = A;
A = eye (n);
endif
d = zeros (n);
for k = n-1:-1:1
## Generate random Householder transformation.
x = randn (n-k+1, 1);
s = norm (x);
sgn = sign (x(1)) + (x(1) == 0); # Modification for sign(1)=1.
s = sgn*s;
d(k) = -sgn;
x(1) = x(1) + s;
beta = s*x(1);
## Apply the transformation to A.
y = x'*A(k:n,:);
A(k:n,:) = A(k:n,:) - x*(y/beta);
endfor
## Tidy up signs
for i = 1:n-1
A(i,:) = d(i)*A(i,:);
endfor
A(n,:) = A(n,:) * sign (randn);
B = A;
endfunction
## BIST testing for just a few functions to verify that the main gallery
## dispatch function works.
%!assert (gallery ("clement", 3), [0 1 0; 2 0 2; 0 1 0])
%!assert (gallery ("invhess", 2), [1 -1; 1 2])
## Test input validation of main dispatch function only
%!error <Invalid call> gallery ()
%!error <NAME must be a string> gallery (123)
%!error <matrix binomial not implemented> gallery ("binomial")
%!error <unknown matrix with NAME foobar> gallery ("foobar")
## BIST testing for individual gallery functions
%!assert (gallery ("minij", 4), [1 1 1 1; 1 2 2 2; 1 2 3 3; 1 2 3 4])
%!assert (gallery ("minij", 1), 1)
%!assert (gallery ("minij", 0), [])
%!assert (gallery ("minij", -1), [])
%!test
%! exp = 1 ./ [
%! 2 3 4 5 6
%! 3 4 5 6 7
%! 4 5 6 7 8
%! 5 6 7 8 9
%! 6 7 8 9 10];
%! assert (gallery ("cauchy", 5), exp);
%! assert (gallery ("cauchy", 1:5), exp);
%! assert (gallery ("cauchy", 1:5, 1:5), exp);
%!
%! exp = 1 ./ [
%! 1 2 3 4 5
%! 2 3 4 5 6
%! 3 4 5 6 7
%! 4 5 6 7 8
%! 5 6 7 8 9];
%! assert (gallery ("cauchy", 0:4, 1:5), exp);
%! assert (gallery ("cauchy", 1:5, 0:4), exp);
%! assert (gallery ("cauchy", 1:5, 4:-1:0), fliplr (exp));
%!
%! exp = 1 ./ [
%! -1 0 1 2 3
%! 0 1 2 3 4
%! 1 2 3 4 5
%! 2 3 4 5 6
%! 3 4 5 6 7];
%! assert (gallery ("cauchy", 1:5, -2:2), exp);
%!
%! exp = 1 ./ [
%! 8 18 -4 2
%! 13 23 1 7
%! 9 19 -3 3
%! 15 25 3 9];
%! assert (gallery ("cauchy", [-2 3 -1 5], [10 20 -2 4]), exp);
%! assert (gallery ("cauchy", [-2 3 -1 5], [10 20 -2 4]'), exp);
%! assert (gallery ("cauchy", [-2 3 -1 5]', [10 20 -2 4]), exp);
%!assert (size (gallery ("chebspec", 5)), [5 5])
%!assert (size (gallery ("chebspec", 5, 1)), [5 5])
%!assert (size (gallery ("chebspec", 5, 0)), [5 5])
%!assert (size (gallery ("chebvand", 7)), [7 7])
%!assert (size (gallery ("chebvand", 1:7)), [7 7])
%!assert (size (gallery ("chebvand", 5, 7)), [5 7])
%!assert (size (gallery ("chow", 5)), [5 5])
%!assert (size (gallery ("chow", 5, 6)), [5 5])
%!assert (size (gallery ("chow", 5, 6, 7)), [5 5])
%!assert (gallery ("circul", 3), [1 2 3; 3 1 2; 2 3 1])
%!assert (gallery ("circul", [1 3 6]), [1 3 6; 6 1 3; 3 6 1])
%!assert (size (gallery ("clement", 5)), [5 5])
%!assert (size (gallery ("clement", 5, 1)), [5 5])
%!assert (size (gallery ("clement", 5, 0)), [5 5])
%!assert (size (gallery ("compar", ones (5))), [5 5])
%!assert (size (gallery ("compar", ones (5), 0)), [5 5])
%!assert (size (gallery ("compar", ones (5), 1)), [5 5])
%!assert (size (gallery ("condex", 4)), [4 4])
%!assert (size (gallery ("condex", 4, 1)), [4 4])
%!assert (size (gallery ("condex", 4, 1, 50)), [4 4])
%!assert (size (gallery ("cycol", [4 5])), [4 5])
%!assert (size (gallery ("cycol", [4 5], 1)), [4 5])
%!assert (size (gallery ("cycol", 4)), [4 4])
%!assert (size (gallery ("cycol", 4, 1)), [4 4])
%!assert (size (gallery ("dorr", 4)), [4 4])
%!assert (cellfun (@rows, nthargout (1:3, @gallery, "dorr", 4)), [3 4 3])
%!assert (size (gallery ("dramadah", 5)), [5 5])
%!assert (size (gallery ("dramadah", 5, 2)), [5 5])
%!test
%! exp = [
%! 0 1 2 3 4
%! 1 0 1 2 3
%! 2 1 0 1 2
%! 3 2 1 0 1
%! 4 3 2 1 0];
%! assert (gallery ("fiedler", 5), exp);
%! assert (gallery ("fiedler", 1:5), exp);
%! assert (gallery ("fiedler", -2:2), exp);
%! assert (gallery ("fiedler", 2:5), exp(1:4,1:4));
%!assert (size (gallery ("forsythe", 5)), [5 5])
%!assert (size (gallery ("forsythe", 5, 1, 0.5)), [5 5])
%!assert (size (gallery ("forsythe", 5, 4, 7)), [5 5])
%!assert (size (gallery ("frank", 5)), [5 5])
%!assert (size (gallery ("frank", 5, 1)), [5 5])
%!assert (size (gallery ("gcdmat", 5)), [5 5])
%!assert (size (gallery ("gearmat", 5)), [5 5])
%!assert (size (gallery ("gearmat", 5, 4)), [5 5])
%!assert (size (gallery ("gearmat", 5, 4, 3)), [5 5])
%!assert (size (gallery ("grcar", 5)), [5 5])
%!assert (size (gallery ("grcar", 5, 2)), [5 5])
%!error <N must be even> gallery ("hanowa", 5)
%!assert (size (gallery ("hanowa", 6, 5)), [6 6])
%!assert (size (gallery ("hanowa", 6, 5)), [6 6])
%!assert (size (gallery ("house", [1:5]')), [5 1])
%!assert (cellfun (@rows, nthargout (1:2, @gallery, "house", [1:5]')), [5 1])
%!assert (size (gallery ("integerdata", 5, [3 2], 5)), [3 2])
%!assert (size (gallery ("integerdata", 5, [3 2 6], 5)), [3 2 6])
%!assert (size (gallery ("invhess", 1:4, 1:3)), [4 4])
%!assert (size (gallery ("invol", 4)), [4 4])
%!assert (size (gallery ("ipjfact", 4)), [4 4])
%!assert (size (gallery ("ipjfact", 4, 0)), [4 4])
%!assert (size (gallery ("ipjfact", 4, 1)), [4 4])
%!assert (size (gallery ("jordbloc", 4)), [4 4])
%!assert (size (gallery ("jordbloc", 4, 1)), [4 4])
%!assert (size (gallery ("jordbloc", 4, 3)), [4 4])
%!assert (size (gallery ("kahan", 4)), [4 4])
%!assert (size (gallery ("kahan", [4 5])), [4 5])
%!assert (size (gallery ("kahan", [4 5], 1)), [4 5])
%!assert (size (gallery ("kahan", [4 5], 1, 30)), [4 5])
%!assert (size (gallery ("kms", 5)), [5 5])
%!assert (size (gallery ("kms", 5, 0.2)), [5 5])
%!assert (size (gallery ("krylov", 4)), [4 4])
%!assert (size (gallery ("krylov", ones (4))), [4 4])
%!assert (size (gallery ("krylov", ones (4), [.2 .3 .4 .5], 3)), [4 3])
%!assert (size (gallery ("lauchli", 5)), [6 5])
%!assert (size (gallery ("lauchli", 5, 3)), [6 5])
%!assert (size (gallery ("lehmer", 5)), [5 5])
%!assert (size (gallery ("lesp", 5)), [5 5])
%!assert (size (gallery ("lotkin", 5)), [5 5])
%!assert (size (gallery ("minij", 5)), [5 5])
%!assert (size (gallery ("moler", 5)), [5 5])
%!assert (size (gallery ("moler", 5, 0.2)), [5 5])
%!assert (size (gallery ("neumann", 4)), [4 4])
%!assert (size (gallery ("normaldata", [5 4 6], 3)), [5 4 6])
%!assert (size (gallery ("orthog", 5)), [5 5])
%!assert (size (gallery ("orthog", 5, 2)), [5 5])
%!assert (size (gallery ("orthog", 5, -2)), [5 5])
%!assert (size (gallery ("parter", 5)), [5 5])
%!assert (size (gallery ("pei", 5)), [5 5])
%!assert (size (gallery ("pei", 5, 4)), [5 5])
%!assert (size (gallery ("poisson", 1)), [1 1])
%!assert (size (gallery ("poisson", 4)), [16 16])
%!assert (size (gallery ("poisson", 5)), [25 25])
%!assert (size (gallery ("prolate", 5)), [5 5])
%!assert (size (gallery ("prolate", 5, 0.5)), [5 5])
%!assert (size (gallery ("randhess", 5)), [5 5])
%!assert (size (gallery ("randhess", 2:5)), [4 4])
%!assert (size (gallery ("rando", 5)), [5 5])
%!assert (size (gallery ("rando", 5, 2)), [5 5])
%!assert (size (gallery ("randsvd", 5)), [5 5])
%!assert (size (gallery ("randsvd", [5 3])), [5 3])
%!assert (size (gallery ("redheff", 5)), [5 5])
%!assert (size (gallery ("riemann", 5)), [5 5])
%!assert (size (gallery ("ris", 5)), [5 5])
%!assert (size (gallery ("smoke", 5)), [5 5])
%!assert (size (gallery ("smoke", 5, 1)), [5 5])
%!assert (gallery ("smoke", 5, 1)(5, 1), 0)
%!assert (size (gallery ("toeppd", 5)), [5 5])
%!assert (size (gallery ("toeppen", 5)), [5 5])
%!assert (size (gallery ("tridiag", 5)), [5 5])
%!assert (size (gallery ("tridiag", 1:4, 1:5, 1:4)), [5 5])
%!assert (gallery ("tridiag", 5), gallery ("tridiag", 5, -1, 2, -1))
%!assert (size (gallery ("triw", 5)), [5 5])
%!assert (size (gallery ("uniformdata", [5 3 4], 3)), [5 3 4])
%!assert (size (gallery ("wathen", 2, 3)), [29 29])
%!assert (cellfun (@rows, nthargout (1:2, @gallery, "wilk", 3)), [3 3])
%!assert (cellfun (@rows, nthargout (1:2, @gallery, "wilk", 4)), [4 4])
%!assert (size (gallery ("wilk", 5)), [5 5])
%!assert (size (gallery ("wilk", 21)), [21 21])
|