File: hadamard.m

package info (click to toggle)
octave 9.4.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 144,300 kB
  • sloc: cpp: 332,784; ansic: 77,239; fortran: 20,963; objc: 9,396; sh: 8,213; yacc: 4,925; lex: 4,389; perl: 1,544; java: 1,366; awk: 1,259; makefile: 648; xml: 189
file content (183 lines) | stat: -rw-r--r-- 6,274 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
########################################################################
##
## Copyright (C) 1993-2024 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################
##
## Original version by Paul Kienzle distributed as free software in the
## public domain.

## -*- texinfo -*-
## @deftypefn {} {@var{h} =} hadamard (@var{n})
## Construct a Hadamard matrix (@nospell{Hn}) of size @var{n}-by-@var{n}.
##
## The size @var{n} must be of the form @math{2^k * p} in which p is one of
## 1, 12, 20 or 28.  The returned matrix is normalized, meaning
## @w{@code{Hn(:,1) == 1}}@ and @w{@code{Hn(1,:) == 1}}.
##
## Some of the properties of Hadamard matrices are:
##
## @itemize @bullet
## @item
## @code{kron (Hm, Hn)} is a Hadamard matrix of size @var{m}-by-@var{n}.
##
## @item
## @code{Hn * Hn' = @var{n} * eye (@var{n})}.
##
## @item
## The rows of @nospell{Hn} are orthogonal.
##
## @item
## @code{det (@var{A}) <= abs (det (Hn))} for all @var{A} with
## @w{@code{abs (@var{A}(i, j)) <= 1}}.
##
## @item
## Multiplying any row or column by -1 and the matrix will remain a Hadamard
## matrix.
## @end itemize
## @seealso{compan, hankel, toeplitz}
## @end deftypefn

## Reference [1] contains a list of Hadamard matrices up to n=256.
## See code for h28 in hadamard.m for an example of how to extend
## this function for additional p.
##
## Reference:
## [1] A Library of Hadamard Matrices, N. J. A. Sloane
##     http://www.research.att.com/~njas/hadamard/

function h = hadamard (n)

  if (nargin < 1)
    print_usage ();
  endif

  ## Find k if n = 2^k*p.
  k = 0;
  while (n > 1 && fix (n/2) == n/2)
    k += 1;
    n /= 2;
  endwhile

  ## Find base hadamard.
  ## Except for n=2^k, need a multiple of 4.
  if (n != 1)
    k -= 2;
  endif

  ## Trigger error if not a multiple of 4.
  if (k < 0)
    n =- 1;
  endif

  switch (n)
    case 1
      h = 1;
    case 3
      h = h12 ();
    case 5
      h = h20 ();
    case 7
      h = h28 ();
    otherwise
      error ("hadamard: N must be 2^k*p, for p = 1, 12, 20 or 28");
  endswitch

  ## Build H(2^k*n) from kron(H(2^k),H(n)).
  h2 = [1,1;1,-1];
  while (true)
    if (fix (k/2) != k/2)
      h = kron (h2, h);
    endif
    k = fix (k/2);
    if (k == 0)
      break;
    endif
    h2 = kron (h2, h2);
  endwhile

endfunction

function h = h12 ()
  tu = [-1,+1,-1,+1,+1,+1,-1,-1,-1,+1,-1];
  tl = [-1,-1,+1,-1,-1,-1,+1,+1,+1,-1,+1];
  ## Note: assert (tu(2:end), tl(end:-1:2)).
  h = ones (12);
  h(2:end,2:end) = toeplitz (tu, tl);
endfunction

function h = h20 ()
  tu = [+1,-1,-1,+1,+1,+1,+1,-1,+1,-1,+1,-1,-1,-1,-1,+1,+1,-1,-1];
  tl = [+1,-1,-1,+1,+1,-1,-1,-1,-1,+1,-1,+1,-1,+1,+1,+1,+1,-1,-1];
  ## Note: assert (tu(2:end), tl(end:-1:2)).
  h = ones (20);
  h(2:end,2:end) = fliplr (toeplitz (tu, tl));
endfunction

function h = h28 ()

  ## Williamson matrix construction from
  ## http://www.research.att.com/~njas/hadamard/had.28.will.txt
  ## Normalized so that each row and column starts with +1
  h = [1 1  1  1  1  1  1  1  1 1  1  1  1 1 1 1 1 1  1 1 1 1 1  1 1  1 1  1
       1 1 -1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 1 1 1 1 1 -1 1 1 1 1 -1 1 -1 1 -1
       1 -1 1 -1 -1 -1 -1 1 -1 1 1 -1 -1 1 -1 -1 -1 -1 1 1 -1 1 -1 1 1 1 1 1
       1 -1 -1 1 -1 -1 -1 1 1 1 1 1 -1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 1 -1 1
       1 -1 -1 -1 1 -1 -1 1 1 -1 1 1 1 1 1 -1 -1 -1 1 1 1 -1 1 -1 1 -1 -1 -1
       1 -1 -1 -1 -1 1 -1 1 1 -1 -1 1 1 -1 -1 -1 1 1 -1 -1 -1 1 1 1 1 1 1 -1
       1 -1 -1 -1 -1 -1 1 -1 1 -1 -1 -1 1 -1 1 1 1 -1 1 1 1 1 -1 1 -1 1 -1 1
       1 -1 1 1 1 1 -1 -1 1 -1 -1 -1 -1 1 1 1 -1 -1 -1 -1 1 -1 -1 1 1 1 1 -1
       1 -1 -1 1 1 1 1 1 -1 -1 -1 -1 -1 1 -1 -1 -1 1 -1 1 1 1 1 -1 -1 1 -1 1
       1 1 1 1 -1 -1 -1 -1 -1 -1 1 1 1 -1 1 -1 -1 -1 -1 -1 1 1 1 -1 -1 1 1 1
       1 -1 1 1 1 -1 -1 -1 -1 1 -1 1 1 -1 -1 -1 1 1 -1 1 1 -1 -1 1 1 -1 -1 1
       1 -1 -1 1 1 1 -1 -1 -1 1 1 -1 1 -1 -1 1 1 -1 1 1 -1 -1 1 -1 -1 1 1 -1
       1 -1 -1 -1 1 1 1 -1 -1 1 1 1 -1 -1 1 1 -1 -1 -1 -1 -1 1 1 1 1 -1 -1 1
       1 1 1 1 1 -1 -1 1 1 -1 -1 -1 -1 -1 -1 1 1 -1 1 -1 -1 1 1 -1 1 -1 -1 1
       1 1 -1 1 1 -1 1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 -1 1 -1 1 -1 1 -1 -1 1 -1
       1 1 -1 1 -1 -1 1 -1 1 1 1 -1 -1 -1 -1 -1 -1 1 1 -1 1 -1 1 1 1 1 -1 -1
       1 1 -1 1 -1 1 1 1 1 1 -1 -1 1 -1 1 -1 -1 -1 -1 1 -1 -1 -1 -1 1 -1 1 1
       1 1 -1 1 -1 1 -1 1 -1 1 -1 1 1 1 -1 1 -1 -1 1 -1 1 1 -1 1 -1 -1 -1 -1
       1 -1 1 -1 1 -1 1 1 1 1 1 -1 1 -1 -1 1 -1 1 -1 -1 1 1 -1 -1 -1 -1 1 -1
       1 1 1 -1 1 -1 1 1 -1 1 -1 -1 1 1 1 -1 1 -1 -1 -1 -1 -1 1 1 -1 1 -1 -1
       1 1 -1 -1 1 -1 1 -1 -1 -1 -1 1 1 1 -1 1 -1 1 1 -1 -1 -1 -1 -1 1 1 1 1
       1 1 1 -1 -1 1 1 1 -1 -1 1 1 -1 -1 -1 1 1 -1 -1 1 1 -1 -1 -1 1 1 -1 -1
       1 1 -1 -1 1 1 -1 1 -1 -1 1 -1 -1 -1 1 -1 1 1 1 -1 1 -1 -1 1 -1 -1 1 1
       1 -1 1 -1 -1 1 1 -1 1 1 -1 1 -1 1 -1 -1 1 -1 1 -1 1 -1 1 -1 -1 -1 1 1
       1 1 1 -1 1 1 -1 -1 1 1 -1 1 -1 -1 1 -1 -1 1 1 1 -1 1 -1 -1 -1 1 -1 -1
       1 -1 1 1 -1 1 1 -1 -1 -1 1 -1 1 1 1 -1 1 1 1 -1 -1 1 -1 -1 1 -1 -1 -1
       1 1 1 -1 -1 1 -1 -1 1 -1 1 -1 1 1 -1 1 -1 1 -1 1 -1 -1 1 1 -1 -1 -1 1
       1 -1 1 1 -1 -1 1 1 -1 -1 -1 1 -1 -1 1 1 -1 1 1 1 -1 -1 1 1 -1 -1 1 -1];

endfunction


%!assert (hadamard (1), 1)
%!assert (hadamard (2), [1,1;1,-1])
%!test
%! for n = [1,2,4,8,12,24,48,20,28,2^9]
%!   h = hadamard (n);
%!   assert (norm (h*h' - n*eye (n)), 0);
%! endfor

%!error <Invalid call> hadamard ()
%!error hadamard (1,2)
%!error <N must be 2\^k\*p> hadamard (5)