1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
|
########################################################################
##
## Copyright (C) 1993-2024 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING. If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################
## -*- texinfo -*-
## @deftypefn {} {@var{hinv} =} invhilb (@var{n})
## Return the inverse of the Hilbert matrix of order @var{n}.
##
## This can be computed exactly using
## @tex
## $$\eqalign{
## A_{ij} &= -1^{i+j} (i+j-1)
## \left( \matrix{n+i-1 \cr n-j } \right)
## \left( \matrix{n+j-1 \cr n-i } \right)
## \left( \matrix{i+j-2 \cr i-2 } \right)^2 \cr
## &= { p(i)p(j) \over (i+j-1) }
## }$$
## where
## $$
## p(k) = -1^k \left( \matrix{ k+n-1 \cr k-1 } \right)
## \left( \matrix{ n \cr k } \right)
## $$
## @end tex
## @ifnottex
##
## @example
## @group
##
## (i+j) /n+i-1\ /n+j-1\ /i+j-2\ 2
## A(i,j) = -1 (i+j-1)( )( ) ( )
## \ n-j / \ n-i / \ i-2 /
##
## = p(i) p(j) / (i+j-1)
##
## @end group
## @end example
##
## @noindent
## where
##
## @example
## @group
## k /k+n-1\ /n\
## p(k) = -1 ( ) ( )
## \ k-1 / \k/
## @end group
## @end example
##
## @end ifnottex
## The validity of this formula can easily be checked by expanding the binomial
## coefficients in both formulas as factorials. It can be derived more
## directly via the theory of Cauchy matrices. See @nospell{J. W. Demmel},
## @cite{Applied Numerical Linear Algebra}, p.@: 92.
##
## Compare this with the numerical calculation of @code{inv (hilb (n))},
## which suffers from the ill-conditioning of the Hilbert matrix, and the
## finite precision of your computer's floating point arithmetic.
## @seealso{hilb}
## @end deftypefn
function hinv = invhilb (n)
if (nargin < 1)
print_usage ();
elseif (! isscalar (n))
error ("invhilb: N must be a scalar integer");
endif
## The point about the second formula above is that when vectorized,
## p(k) is evaluated for k=1:n which involves O(n) calls to bincoeff
## instead of O(n^2).
##
## We evaluate the expression as (-1)^(i+j)*(p(i)*p(j))/(i+j-1) except
## when p(i)*p(j) would overflow. In cases where p(i)*p(j) is an exact
## machine number, the result is also exact. Otherwise we calculate
## (-1)^(i+j)*p(i)*(p(j)/(i+j-1)).
##
## The Octave bincoeff routine uses transcendental functions (gammaln
## and exp) rather than multiplications, for the sake of speed.
## However, it rounds the answer to the nearest integer, which
## justifies the claim about exactness made above.
hinv = zeros (n);
k = [1:n];
p = k .* bincoeff (k+n-1, k-1) .* bincoeff (n, k);
p(2:2:n) = -p(2:2:n);
if (n < 203)
for l = 1:n
hinv(l,:) = (p(l) * p) ./ [l:l+n-1];
endfor
else
for l = 1:n
hinv(l,:) = p(l) * (p ./ [l:l+n-1]);
endfor
endif
endfunction
%!assert (invhilb (1), 1)
%!assert (invhilb (2), [4, -6; -6, 12])
%!test
%! result4 = [16 , -120 , 240 , -140;
%! -120, 1200 , -2700, 1680;
%! 240 , -2700, 6480 , -4200;
%! -140, 1680 , -4200, 2800];
%! assert (invhilb (4), result4);
%!assert (invhilb (7) * hilb (7), eye (7), sqrt (eps))
%!error <Invalid call> invhilb ()
%!error <N must be a scalar integer> invhilb ([1, 2])
|