1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
|
########################################################################
##
## Copyright (C) 1993-2024 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING. If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################
## -*- texinfo -*-
## @deftypefn {} {@var{T} =} toeplitz (@var{c})
## @deftypefnx {} {@var{T} =} toeplitz (@var{c}, @var{r})
## Return the Toeplitz matrix constructed from the first column @var{c},
## and optionally the first row @var{r}.
##
## If the second argument is omitted, the first row is taken to be the
## same as the first column. If the first element of @var{r} is not the same
## as the first element of @var{c}, the first element of @var{c} is used.
##
## A Toeplitz, or diagonal-constant, matrix has the same value along each
## diagonal. Although it need not be square, it often is. An @nospell{MxN}
## Toeplitz matrix has the form:
## @tex
## $$
## \left[\matrix{c_1 & r_2 & r_3 & \cdots & r_n\cr
## c_2 & c_1 & r_2 & \cdots & r_{n-1}\cr
## c_3 & c_2 & c_1 & \cdots & r_{n-2}\cr
## \vdots & \vdots & \vdots & \ddots & \vdots\cr
## c_m & c_{m-1} & c_{m-2} & \ldots & c{m-n+1}}\right]
## $$
## @end tex
## @ifnottex
##
## @example
## @group
## c(1) r(2) r(3) @dots{} r(n)
## c(2) c(1) r(2) @dots{} r(n-1)
## c(3) c(2) c(1) @dots{} r(n-2)
## . . . . .
## . . . . .
## . . . . .
## c(m) c(m-1) c(m-2) @dots{} c(m-n+1)
## @end group
## @end example
##
## @end ifnottex
## @seealso{hankel}
## @end deftypefn
function T = toeplitz (c, r)
if (nargin < 1)
print_usage ();
endif
if (nargin == 1)
if (! isvector (c))
error ("toeplitz: C must be a vector");
endif
r = c;
nr = length (c);
nc = nr;
else
if (! (isvector (c) && isvector (r)))
error ("toeplitz: C and R must be vectors");
elseif (r(1) != c(1))
warning ("toeplitz: column wins diagonal conflict");
endif
nr = length (c);
nc = length (r);
endif
if (nr == 0 || nc == 0)
## Empty matrix.
T = zeros (nr, nc, class (c));
return;
endif
## If we have a single complex argument, we want to return a
## Hermitian-symmetric matrix (actually, this will really only be
## Hermitian-symmetric if the first element of the vector is real).
if (nargin == 1 && iscomplex (c))
c = conj (c);
c(1) = conj (c(1));
endif
if (issparse (c) && issparse (r))
c = c(:).'; # enforce row vector
r = r(:).'; # enforce row vector
cidx = find (c);
ridx = find (r);
## Ignore the first element in r.
ridx = ridx(ridx > 1);
## Form matrix.
T = spdiags (repmat (c(cidx),nr,1),1-cidx,nr,nc) + ...
spdiags (repmat (r(ridx),nr,1),ridx-1,nr,nc);
else
## Concatenate data into a single column vector.
data = [r(end:-1:2)(:); c(:)];
## Get slices.
slices = cellslices (data, nc:-1:1, nc+nr-1:-1:nr);
## Form matrix.
T = horzcat (slices{:});
endif
endfunction
%!assert (toeplitz (1), [1])
%!assert (toeplitz ([1, 2, 3], [1; -3; -5]), [1, -3, -5; 2, 1, -3; 3, 2, 1])
%!assert (toeplitz ([1, 2, 3], [1; -3i; -5i]),
%! [1, -3i, -5i; 2, 1, -3i; 3, 2, 1])
## Test input validation
%!error <Invalid call> toeplitz ()
%!error <C must be a vector> toeplitz ([1, 2; 3, 4])
%!error <C and R must be vectors> toeplitz ([1, 2; 3, 4], 1)
%!error <C and R must be vectors> toeplitz (1, [1, 2; 3, 4])
|