1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
|
########################################################################
##
## Copyright (C) 1996-2024 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING. If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################
## -*- texinfo -*-
## @deftypefn {} {@var{r} =} corr (@var{x})
## @deftypefnx {} {@var{r} =} corr (@var{x}, @var{y})
## Compute matrix of correlation coefficients.
##
## If each row of @var{x} and @var{y} is an observation and each column is
## a variable, then the @w{(@var{i}, @var{j})-th}@ entry of
## @code{corr (@var{x}, @var{y})} is the correlation between the
## @var{i}-th variable in @var{x} and the @var{j}-th variable in @var{y}.
## @var{x} and @var{y} must have the same number of rows (observations).
## @tex
## $$
## {\rm corr}(x,y) = {{\rm cov}(x,y) \over {\rm std}(x) \, {\rm std}(y)}
## $$
## @end tex
## @ifnottex
##
## @example
## corr (@var{x},@var{y}) = cov (@var{x},@var{y}) / (std (@var{x}) * std (@var{y}))
## @end example
##
## @end ifnottex
## If called with one argument, compute @code{corr (@var{x}, @var{x})},
## the correlation between the columns of @var{x}.
## @seealso{cov}
## @end deftypefn
function r = corr (x, y = [])
if (nargin < 1)
print_usage ();
endif
if (! (isnumeric (x) || islogical (x)))
error ("corr: X must be a numeric vector or matrix");
endif
## No check for division by zero error, which happens only when
## there is a constant vector and should be rare.
if (nargin == 2)
## Adjust for Octave 9.1.0 compatibility behavior change in two-input cov.
## cov now treats cov(x,y) as cov(x(:),y(:)), returning a 2x2 covariance
## of the two univariate distributions x and y. corr will now pass [x,y]
## as cov([x,y]), which for m x n inputs will return 2n x 2n outputs, with
## the off-diagonal matrix quarters containing what was previously
## returned by cov(x,y).
## FIXME: Returning a larger than needed array and discarding 3/4 of the
## information is non-ideal. Consider implementing a more
## efficient cov here as a subfunction to corr. At that point,
## input validation will need to be coded back into this function.
if (! (isnumeric (y) || islogical (y)))
error ("corr: Y must be a numeric vector or matrix");
endif
## Check for equal number of rows before concatenating inputs for cov.
## This will also catch mixed orientation 2-D vectors which cov allows but
## corr should not.
if (rows (x) != rows (y))
error ("corr: X and Y must have the same number of rows");
endif
rowx = isrow (x);
rowy = isrow (y);
if ((! rowy && ndims (x) > 2) || (! rowx && ndims (y) > 2))
## For compatibility 3D is permitted only if other input is row vector
## which results in NaNs.
error (["corr: X and Y must be two dimensional unless the other ", ...
"input is a scalar or row vector"]);
endif
## Special handling for row vectors. std=0 along dim 1 and division by 0
## will return NaN, but cov will process along vector dimension. Keep
## special handling after call to cov so it handles all other input
## validation and avoid duplicating validation overhead for all other
## cases.
ncx = columns (x);
ncy = columns (y);
if (rowx || rowy)
if (isa (x, "single") || isa (y, "single"))
r = NaN (ncx, ncy, "single");
else
r = NaN (ncx, ncy);
endif
return;
endif
c = cov ([x, y]); # Also performs input validation of x and y.
c = c(1:ncx, ncx+1:end);
s = std (x, [], 1)' * std (y, [], 1);
r = c ./ s;
else
c = cov (x); # Also performs input validation of x.
if (isrow (x)) # Special handling for row vector.
nc = columns (x);
if (isa (x, "single"))
r = NaN (nc, "single");
else
r = NaN (nc);
endif
return;
endif
s = sqrt (diag (c));
r = c ./ (s * s');
endif
endfunction
%!test
%! x = rand (10);
%! cc1 = corr (x);
%! cc2 = corr (x, x);
%! assert (size (cc1) == [10, 10] && size (cc2) == [10, 10]);
%! assert (cc1, cc2, sqrt (eps));
%!test
%! x = [1:3]';
%! y = [3:-1:1]';
%! assert (corr (x, y), -1, 5*eps);
%! assert (corr (x, flipud (y)), 1, 5*eps);
%! assert (corr ([x, y]), [1 -1; -1 1], 5*eps);
%!test
%! x = single ([1:3]');
%! y = single ([3:-1:1]');
%! assert (corr (x, y), single (-1), 5*eps);
%! assert (corr (x, flipud (y)), single (1), 5*eps);
%! assert (corr ([x, y]), single ([1 -1; -1 1]), 5*eps);
## Special case: scalar
%!assert (corr (5), NaN)
%!assert (corr (single (5)), single (NaN))
## Special case: constant vectors
%!assert (corr ([5; 5; 5], [1; 2; 3]), NaN)
%!assert (corr ([1; 2; 3], [5;5;5]), NaN)
%!test <*64555>
%! x = [1 2; 3 4; 5 6];
%! y = [1 2 3]';
%! assert (corr (x, y), [1; 1]);
%! assert (corr (y, x), [1, 1]);
%! assert (corr (x, [y, y]), [1 1; 1 1])
%!test <*64395>
%! x = [1, 2, 3];
%! assert (corr (x), NaN (3));
%! assert (corr (x'), 1, eps);
%! assert (corr (x, x), NaN (3));
%! assert (corr (x', x'), 1, eps);
%!test <*64395>
%! x = single ([1, 2, 3]);
%! assert (corr (x), single (NaN (3)));
%! assert (corr (x'), 1, single (eps));
%! assert (corr (x, x), single (NaN (3)));
%! assert (corr (x', x'), 1, single (eps));
%!assert <*64555> (corr (1, rand (1, 10)), NaN (1, 10));
%!assert <*64555> (corr (rand (1, 10), 1), NaN (10, 1));
%!assert <*64555> (corr (rand (1, 10), rand (1, 10)), NaN (10, 10));
%!assert <*64555> (corr (rand (1, 5), rand (1, 10)), NaN (5, 10));
%!assert <*64555> (corr (5, rand (1, 10, 5)), NaN (1, 10));
%!assert <*64555> (corr (rand (1, 5, 5), rand (1, 10)), NaN (5, 10));
%!assert <*64555> (corr (rand (1, 5, 5, 99), rand (1, 10)), NaN (5, 10));
## Test input validation
%!error <Invalid call> corr ()
%!error corr (1, 2, 3)
%!error <X must be a> corr ("foo")
%!error <X must be a> corr ({123})
%!error <X must be a> corr (struct())
%!error <Y must be a> corr (1, "foo")
%!error <Y must be a> corr (1, {123})
%!error <Y must be a> corr (1, struct())
%!error <Y must be a> corr ([1; 2], ["A"; "B"])
%!error <X and Y must have the same number of rows> corr (ones (2,2), ones (3,2))
%!error <X and Y must have the same number of rows> corr ([1,2,3], [1,2,3]')
%!error <X and Y must have the same number of rows> corr ([1,2,3]', [1,2,3])
%!error <X and Y must have the same number of rows> corr (ones (2,2), ones (1,2,2))
%!error <X and Y must be two dimensional unless> corr (ones (2,2), ones (2,2,2))
%!error corr (ones (2,2,2)) # Single input validation handled by corr
|