File: corrcoef.m

package info (click to toggle)
octave 9.4.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 144,300 kB
  • sloc: cpp: 332,784; ansic: 77,239; fortran: 20,963; objc: 9,396; sh: 8,213; yacc: 4,925; lex: 4,389; perl: 1,544; java: 1,366; awk: 1,259; makefile: 648; xml: 189
file content (308 lines) | stat: -rw-r--r-- 8,940 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
########################################################################
##
## Copyright (C) 2016-2024 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################

## -*- texinfo -*-
## @deftypefn  {} {@var{r} =} corrcoef (@var{x})
## @deftypefnx {} {@var{r} =} corrcoef (@var{x}, @var{y})
## @deftypefnx {} {@var{r} =} corrcoef (@dots{}, @var{param}, @var{value}, @dots{})
## @deftypefnx {} {[@var{r}, @var{p}] =} corrcoef (@dots{})
## @deftypefnx {} {[@var{r}, @var{p}, @var{lci}, @var{hci}] =} corrcoef (@dots{})
## Compute a matrix of correlation coefficients.
##
## @var{x} is an array where each column contains a variable and each row is
## an observation.
##
## If a second input @var{y} (of the same size as @var{x}) is given then
## calculate the correlation coefficients between @var{x} and @var{y}.
##
## @var{param}, @var{value} are optional pairs of parameters and values which
## modify the calculation.  Valid options are:
##
## @table @asis
## @item @qcode{"alpha"}
## Confidence level used for the bounds of the confidence interval, @var{lci}
## and @var{hci}.  Default is 0.05, i.e., 95% confidence interval.
##
## @item @qcode{"rows"}
## Determine processing of NaN values.  Acceptable values are @qcode{"all"},
## @qcode{"complete"}, and @qcode{"pairwise"}.  Default is @qcode{"all"}.
## With @qcode{"complete"}, only the rows without NaN values are considered.
## With @qcode{"pairwise"}, the selection of NaN-free rows is made for each
## pair of variables.
## @end table
##
## Output @var{r} is a matrix of Pearson's product moment correlation
## coefficients for each pair of variables.
##
## Output @var{p} is a matrix of pair-wise p-values testing for the null
## hypothesis of a correlation coefficient of zero.
##
## Outputs @var{lci} and @var{hci} are matrices containing, respectively, the
## lower and higher bounds of the 95% confidence interval of each correlation
## coefficient.
## @seealso{corr, cov, std}
## @end deftypefn

## FIXME: It would be good to add a definition of the calculation method
## for a Pearson product moment correlation to the documentation.

function [r, p, lci, hci] = corrcoef (x, varargin)

  if (nargin < 1 || nargin > 6)
    print_usage ();
  endif

  alpha = 0.05;
  rows = "all";

  if (nargin > 1)

    ## Check for matrix argument y
    if (isnumeric (varargin{1}))
      y = varargin{1};
      nx = numel (x);
      ny = numel (y);
      if (nx > 0 && ny > 0 && nx != ny)
        error ("corrcoef: X and Y must be the same size");
      endif
      x = [x(:), y(:)];
      varargin(1) = [];
    endif

    ## Check for Parameter/Value arguments
    for i = 1:2:numel (varargin)

      if (! ischar (varargin{i}))
        error ("corrcoef: parameter %d must be a string", i);
      endif
      parameter = varargin{i};
      if (i+1 > numel (varargin))
        error ('corrcoef: parameter "%s" missing value', parameter);
      endif
      value = varargin{i+1};

      switch (lower (parameter))
        case "alpha"
          if (isnumeric (value) && isscalar (value)
              && value >= 0 && value <= 1)
            alpha = value;
          else
            error ('corrcoef: "alpha" must be a scalar between 0 and 1');
          endif

        case "rows"
          if (! ischar (value))
            error ('corrcoef: "rows" value must be a string');
          endif
          value = lower (value);
          switch (value)
            case {"all", "complete", "pairwise"}
              rows = value;
            otherwise
              error ('corrcoef: "rows" must be "all", "complete", or "pairwise"');
          endswitch

        otherwise
          error ('corrcoef: Unknown option "%s"', parameter);

      endswitch
    endfor
  endif

  if (strcmp (rows, "complete"))
    x(any (isnan (x), 2), :) = [];
  endif

  if (isempty (x) || isscalar (x))
    r = p = lci = hci = NaN;
    return;
  endif

  ## Flags for calculation
  pairwise = strcmp (rows, "pairwise");
  calc_pval = nargout > 1;

  if (isrow (x))
    x = x(:);
  endif
  [m, n] = size (x);
  r = eye (n);
  if (calc_pval)
    p = eye (n);
  endif
  if (strcmp (rows, "pairwise"))
    mpw = m * ones (n);
  endif
  for i = 1:n
    if (! pairwise && any (isnan (x(:,i))))
      r(i,i) = NaN;
      if (nargout > 1)
        p(i,i) = NaN;
      endif
    endif
    for j = i+1:n
      xi = x(:,i);
      xj = x(:,j);
      if (pairwise)
        idx = any (isnan ([xi xj]), 2);
        xi(idx) = xj(idx) = [];
        mpw(i,j) = mpw(j,i) = m - nnz (idx);
      endif
      ## Adjust for Octave 9.1.0 compatability behavior change in two-input
      ## cov, which now handles cov(x,y) as cov(x(:),y(:)) and returns a 2x2
      ## covariance of the two univariate distributions x and y. The previous
      ## scalar covariance expected for r(i,j) is contained in the (1,2)
      ## and (2,1) elements of the new array.

      ## FIXME: Returning a larger than needed arary and discarding 3/4 of the
      ##        information is nonideal, especially in this low efficiency
      ##        for loop approach.  Consider implementing a more efficient cov
      ##        here as a subfunction to corr, or see if vectorizing this
      ##        entire code allows direct usage of current cov version.

      r(i,j) = r(j,i) = (cov (xi, xj) ./ (std (xi) .* std (xj)))(2);
      if (calc_pval)
        df = m - 2;
        stat = sqrt (df) * r(i,j) / sqrt (1 - r(i,j)^2);
        cdf = tcdf (stat, df);
        p(i,j) = p(j,i) = 2 * min (cdf, 1 - cdf);
      endif
    endfor
  endfor

  if (nargout > 2)
    if (pairwise)
      m = mpw;
    endif
    CI = sqrt (2) * erfinv (1-alpha) ./ sqrt (m-3);
    lci = tanh (atanh (r) - CI);
    hci = tanh (atanh (r) + CI);
  endif

endfunction


## Compute cumulative distribution function for T distribution.
function cdf = tcdf (x, n)

  if (iscomplex (x))
    error ("tcdf: X must not be complex");
  endif

  if (isa (x, "single"))
    cdf = zeros (size (x), "single");
  else
    cdf = zeros (size (x));
  endif

  k = ! isinf (x) & (n > 0);

  xx = x .^ 2;
  x_big_abs = (xx > n);

  ## deal with the case "abs(x) big"
  kk = k & x_big_abs;
  cdf(kk) = betainc (n ./ (n + xx(kk)), n/2, 1/2) / 2;

  ## deal with the case "abs(x) small"
  kk = k & ! x_big_abs;
  cdf(kk) = 0.5 * (1 - betainc (xx(kk) ./ (n + xx(kk)), 1/2, n/2));

  k &= (x > 0);
  if (any (k(:)))
    cdf(k) = 1 - cdf(k);
  endif

  k = isnan (x) | !(n > 0);
  cdf(k) = NaN;

  k = (x == Inf) & (n > 0);
  cdf(k) = 1;

endfunction


%!test
%! x = rand (5);
%! r = corrcoef (x);
%! assert (size (r) == [5, 5]);

%!test
%! x = [1, 2, 3];
%! r = corrcoef (x);
%! assert (size (r) == [1, 1]);

%!assert (isnan (corrcoef ([])))
%!assert (isnan (corrcoef (NaN)))
%!assert (isnan (corrcoef (1)))

%!test
%! x = [NaN, NaN];
%! r = corrcoef (x);
%! assert (size(r) == [1, 1] && isnan (r));

%!test
%! x = rand (5);
%! [r, p] = corrcoef (x);
%! assert (size (r) == [5, 5] && size (p) == [5 5]);
%! assert (diag (r), ones (5,1), eps);

%!test
%! x = rand (5,1);
%! y = rand (5,1);
%! R1 = corrcoef (x, y);
%! R2 = corrcoef ([x, y]);
%! assert (R1, R2);
%! R3 = corrcoef (x.', y.');
%! assert (R1, R3);

%!test
%! x = [1;2;3];
%! y = [1;2;3];
%! r = corrcoef (x, y);
%! assert (r, ones (2,2));

%!test
%! x = [1;2;3];
%! y = [3;2;1];
%! r = corrcoef (x, y);
%! assert (r, [1, -1; -1, 1]);

%!test
%! x = [1;2;3];
%! y = [1;1;1];
%! r = corrcoef (x, y);
%! assert (r, [1, NaN; NaN, 1]);

%!error <Invalid call> corrcoef ()
%!error <Invalid call> corrcoef (1, 2, "alpha", 0.05, "rows", "all" , 1)
%!error <parameter 1 must be a string> corrcoef (1, 2, 3)
%!error <parameter "alpha" missing value> corrcoef (1, 2, "alpha")
%!error <"alpha" must be a scalar> corrcoef (1,2, "alpha", "1")
%!error <"alpha" must be a scalar> corrcoef (1,2, "alpha", ones (2,2))
%!error <"alpha" must be a scalar between 0 and 1> corrcoef (1,2, "alpha", -1)
%!error <"alpha" must be a scalar between 0 and 1> corrcoef (1,2, "alpha", 2)
%!error <"rows" must be "all"...> corrcoef (1,2, "rows", "foobar")
%!error <Unknown option "foobar"> corrcoef (1,2, "foobar", 1)