1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
|
########################################################################
##
## Copyright (C) 1995-2024 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING. If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################
## -*- texinfo -*-
## @deftypefn {} {@var{c} =} cov (@var{x})
## @deftypefnx {} {@var{c} =} cov (@var{x}, @var{y})
## @deftypefnx {} {@var{c} =} cov (@dots{}, @var{opt})
## @deftypefnx {} {@var{c} =} cov (@dots{}, @var{nanflag})
## Compute the covariance matrix.
##
## The covariance between two variable vectors @var{A} and @var{B} is
## calculated as:
## @tex
## $$
## \sigma_{ij} = {1 \over N-1} \sum_{i=1}^N (a_i - \bar{a})(b_i - \bar{b})
## $$
## where $\bar{a}$ and $\bar{b}$ are the mean values of $a$ and $b$ and $N$ is
## the length of the vectors $a$ and $b$.
## @end tex
## @ifnottex
##
## @example
## cov (@var{a},@var{b}) = 1/(N-1) * SUM_i (@var{a}(i) - mean (@var{a})) * (@var{b}(i) - mean (@var{b}))
## @end example
##
## @noindent
## where @math{N} is the length of the vectors @var{a} and @var{b}.
## @end ifnottex
##
## If called with one argument, compute @code{cov (@var{x}, @var{x})}. If
## @var{x} is a vector, this is the scalar variance of @var{x}. If @var{x} is
## a matrix, each row of @var{x} is treated as an observation, and each column
## as a variable, and the @w{(@var{i}, @var{j})-th}@ entry of
## @code{cov (@var{x})} is the covariance between the @var{i}-th and
## @var{j}-th columns in @var{x}. If @var{x} has dimensions n x m, the output
## @var{c} will be a m x m square covariance matrix.
##
## If called with two arguments, compute @code{cov (@var{x}, @var{y})}, the
## covariance between two random variables @var{x} and @var{y}. @var{x} and
## @var{y} must have the same number of elements, and will be treated as
## vectors with the covariance computed as
## @code{cov (@var{x}(:), @var{y}(:))}. The output will be a 2 x 2
## covariance matrix.
##
## The optional argument @var{opt} determines the type of normalization to
## use. Valid values are
##
## @table @asis
## @item 0 [default]:
## Normalize with @math{N-1}. This provides the best unbiased estimator of
## the covariance.
##
## @item 1:
## Normalize with @math{N}. This provides the second moment around the
## mean. @var{opt} is set to 1 for N = 1.
## @end table
##
## The optional argument @var{nanflag} must appear last in the argument list
## and controls how NaN values are handled by @code{cov}. The three valid
## values are:
##
## @table @asis
## @item includenan [default]:
## Leave NaN values in @var{x} and @var{y}. Output will follow the normal
## rules for handling NaN values in arithmetic operations.
##
## @item omitrows:
## Rows containing NaN values are trimmed from both @var{x} and @var{y}
## prior to calculating the covariance. A NaN in one variable will remove
## that row from both @var{x} and @var{y}.
##
## @item partialrows:
## Rows containing NaN values are ignored from both @var{x} and @var{y}
## independently for each @var{i}-th and @var{j}-th covariance
## calculation. This may result in a different number of observations,
## @math{N}, being used to calculated each element of the covariance matrix.
## @end table
##
## Compatibility Note: Previous versions of @code{cov} treated rows
## @var{x} and @var{y} as multivariate random variables. This version
## attempts to maintain full compatibility with @sc{matlab} by treating
## @var{x} and @var{y} as two univariate distributions regardless of shape,
## resulting in a 2x2 output matrix. Code relying on Octave's previous
## definition will need to be modified when running this newer version of
## @code{cov}. The previous behavior can be obtained by using the
## NaN package's @code{covm} function as @code{covm (@var{x}, @var{y}, "D")}.
## @seealso{corr}
## @end deftypefn
function c = cov (x, varargin)
if (nargin < 1 || nargin > 4)
print_usage ();
endif
opt = 0;
is_y = false;
nanflag = "includenan";
if (! (isnumeric (x) || islogical (x)))
error ("cov: X must be a numeric vector or matrix");
endif
if (isrow (x))
x = x.';
endif
nvarg = numel (varargin);
if (nvarg > 0)
switch (nvarg)
case 3
## Only char input should be nanflag, must be last.
if (ischar (varargin{1}) || ischar (varargin {2}))
if (ischar (varargin{3}))
error ("cov: only one NANFLAG parameter may be specified");
else
error ("cov: NANFLAG parameter must be the last input");
endif
endif
y = varargin{1};
opt = double (varargin{2}); # opt should not affect output class.
nanflag = lower (varargin {3});
is_y = true;
case 2
if (ischar (varargin{1}))
error ("cov: NANFLAG parameter must be the last input");
endif
if (ischar (varargin{end}))
nanflag = lower (varargin{end});
if ((isnumeric (varargin{1}) || islogical (varargin{1})) && ...
isscalar (varargin{1}) && ...
(varargin{1} == 0 || varargin{1} == 1))
opt = double (varargin {1});
else
y = varargin{1};
is_y = true;
endif
else
y = varargin{1};
opt = double (varargin{2});
is_y = true;
endif
case 1
if (ischar (varargin{end}))
nanflag = lower (varargin{end});
elseif ((isnumeric (varargin{1}) || islogical (varargin{1})) && ...
isscalar (varargin{1}) && ...
(varargin{1} == 0 || varargin{1} == 1))
opt = double (varargin {1});
else
y = varargin{1};
is_y = true;
endif
endswitch
if (is_y)
if (! (isnumeric (y) || islogical (y)))
error ("cov: Y must be a numeric vector or matrix");
elseif (numel (x) != numel (y))
error ("cov: X and Y must have the same number of observations");
else
## Flatten to single array. Process the same as two-column x.
x = [x(:), y(:)];
endif
endif
if (! any (strcmp (nanflag, {"includenan", "omitrows", "partialrows"})))
error ("cov: unknown NANFLAG parameter '%s'", nanflag);
endif
if ((opt != 0 && opt != 1) || ! isscalar (opt))
error ("cov: normalization paramter OPT must be 0 or 1");
endif
endif
if (ndims (x) > 2)
## Note: Matlab requires 2D inputs even if providing a y input results in
## reshaping for operation as cov (x(:), y(:)) (tested in 2022b).
## Octave permits arbitrarily shaped inputs for the cov(x,y) case as
## long as numel (x) == numel (y). Only when no y is provided is X
## restricted to 2D for consistent 2D columnwise behavior of cov.
error ("cov: X must be a 2-D matrix or vector");
endif
## Special case: empty inputs. Output shape changes depends on number of
## columns. Inputs already verified as limited to 2D.
if (isempty (x))
sx = size (x);
if (sx == [0, 0])
c = NaN;
elseif (sx(1) > 0)
c = [];
else
c = NaN (sx(2));
endif
if (isa (x, "single"))
c = single (c);
endif
return;
endif
if (! strcmp (nanflag, "includenan") && all (nnx = ! isnan (x)))
## Avoid unnecessary slower nanflag processing.
nanflag = "includenan";
endif
switch (nanflag)
case {"includenan", "omitrows"}
if (strcmp (nanflag, "omitrows"))
## Trim any rows in x containing a NaN.
x = x(all (nnx, 2), :);
endif
n = rows (x);
if (n < 2)
## Scalars and empties force opt = 1.
opt = 1;
endif
x -= sum (x, 1) / n;
c = x' * x / (n - 1 + opt);
case "partialrows"
## Find all NaN locations for adjusted processing later. NaN's will
## only be trimmed for the columns containing them when calculating
## covariance involving that row. Each output element of c might have a
## unique n, opt, and mean for each of the two vectors used to calculate
## that element based on the paired column total number of non-NaN rows.
## Separate out simple vector case. Project into dim3 for general case.
if (iscolumn (x))
x = x(nnx);
n = numel (x);
if (n < 2)
opt = 1;
endif
x -= sum (x, 1) / n;
## Matrix multiplication preserves output size compatibliity if x is
## trimmed to empty.
c = (x' * x) / (n - 1 + opt);
else
## Number of elements in each column pairing.
n = nnx' * nnx;
## opt for each column pairing
opt = opt * ones (columns (x));
opt (n < 2) = 1;
## Mean for each column pairing.
## Rotate x vectors into dim3, project into dim1 with non-nan array
x = permute(x, [3, 2, 1]) .* permute (nnx, [2, 3, 1]);
mu = x;
mu (isnan (x)) = 0; # Exclude input NaNs from summation.
mu = sum (mu, 3) ./ n; # Vectors trimmed to n=0 may create more NaNs.
x -= mu; # Center x's.
x(isnan (x)) = 0; # Exclude input and mean NaNs from output.
## Sum dim3 elements of x products to emulate x'*x.
c = sum (permute (x, [2,1,3]) .* x, 3) ./ (n - 1 + opt);
endif
endswitch
endfunction
%!test
%! x = rand (10);
%! cx1 = cov (x);
%! cx2 = cov (x, x);
%! assert (size (cx1) == [10, 10]);
%! assert (size (cx2) == [2, 2]);
%!test
%! x = [1:3]';
%! y = [3:-1:1]';
%! assert (cov (x, x), [1 1; 1 1]);
%! assert (cov (x, x), cov ([x, x]));
%! assert (cov (x, y), [1 -1; -1 1]);
%! assert (cov (x, y), cov ([x, y]));
%!test
%! x = [1:3]';
%! y = [3:-1:1]';
%! assert (cov (single (x)), single (1));
%! assert (cov (single (x), x), single ([1 1; 1 1]));
%! assert (cov (x, single (x)), single ([1 1; 1 1]));
%! assert (cov (single (x), single (x)), single ([1 1; 1 1]));
%!test
%! x = [1:8];
%! c = cov (x);
%! assert (isscalar (c));
%! assert (c, 6);
%!test <*64395>
%! x = [1, 2, 3];
%! assert (cov (x), 1, eps);
%! assert (cov (x'), 1, eps);
%! assert (cov (x, x), ones (2), eps);
%! assert (cov (x', x), ones (2), eps);
%! assert (cov (x, x'), ones (2), eps);
%! assert (cov (x', x'), ones (2), eps);
%!test
%! x = [1 0; 1 0];
%! y = [1 2; 1 1];
%! z = [1/3 -1/6; -1/6 0.25];
%! assert (cov (x, y), z, eps);
%! assert (cov (x, y(:)), z, eps);
%! assert (cov (x, y(:)'), z, eps);
%! assert (cov (x', y(:)), z .* [1, -1; -1, 1], eps);
%! assert (cov (x(:), y), z, eps);
%! assert (cov (x(:)', y), z, eps);
## Test scalar inputs & class preservation
%!assert (cov (5), 0)
%!assert (cov (1, 0), 0)
%!assert (cov (1, 1), 0)
%!assert (cov (1, 0.1), [0, 0; 0, 0])
%!assert (cov (1, 1.1), [0, 0; 0, 0])
%!assert (cov (1, 3), [0, 0; 0, 0])
%!assert (cov (single (5)), single (0))
%!assert (cov (single (5), 0), single (0))
%!assert (cov (single (5), 1), single (0))
%!assert (cov (single (5), 1.1), single ([0, 0; 0, 0]))
%!assert (cov (5, single (0)), double (0))
%!assert (cov (5, single (1)), double (0))
%!assert (cov (5, single (1.1)), single ([0, 0; 0, 0]))
%!assert (cov (5, single (1.1), 0), single ([0, 0; 0, 0]))
%!assert (cov (5, single (1.1), 1), single ([0, 0; 0, 0]))
%!assert (cov (5, 1.1, single (0)), double([0, 0; 0, 0]))
## Test opt
%!test
%! x = [1:5];
%! c = cov (x, 0);
%! assert (c, 2.5);
%! c = cov (x, 1);
%! assert (c, 2);
%! c = cov (double (x), single (1));
%! assert (class (c), "double");
%!assert (cov (2, 4), zeros(2))
%!assert (cov (2, 4, 0), zeros(2))
%!assert (cov (2, 4, 1), zeros(2))
%!assert (cov (NaN, 4), [NaN, NaN; NaN, 0])
%!assert (cov (NaN, 4, 0), [NaN, NaN; NaN, 0])
%!assert (cov (NaN, 4, 1), [NaN, NaN; NaN, 0])
## Test logical inputs
%!assert (cov (logical(0), logical(0)), double(0))
%!assert (cov (0, logical(0)), double(0))
%!assert (cov (logical(0), 0), double(0))
%!assert (cov (logical([0 1; 1 0]), logical([0 1; 1 0])), double ([1 1;1 1]./3))
%!assert (cov ([1 2 3], [3 4 5], 0), [1 1; 1 1])
%!assert (cov ([1 2 3], [3 4 5], false), [1 1; 1 1])
%!assert (cov ([1 2 3], [3 4 5], 1), [2/3 2/3; 2/3 2/3], eps)
%!assert (cov ([1 2 3], [3 4 5], true), [2/3 2/3; 2/3 2/3], eps)
## Test empty and NaN handling (bug #50583)
%!assert <*50583> (cov ([]), NaN)
%!assert <*50583> (cov (single ([])), single (NaN))
%!assert <*50583> (cov ([], []), NaN (2, 2))
%!assert <*50583> (cov (single ([]), single([])), single (NaN (2, 2)))
%!assert <*50583> (cov ([], single ([])), single (NaN (2, 2)))
%!assert <*50583> (cov (single ([]), []), single (NaN (2, 2)))
%!assert <*50583> (cov (ones(1, 0)), NaN)
%!assert <*50583> (cov (ones(2, 0)), [])
%!assert <*50583> (cov (ones(0, 1)), NaN)
%!assert <*50583> (cov (ones(0, 2)), NaN (2, 2))
%!assert <*50583> (cov (ones(0, 6)), NaN (6, 6))
%!assert <*50583> (cov (ones(2, 0), []), NaN (2, 2))
%!assert <*50583> (cov (ones(0,6), []), NaN (2, 2))
%!assert <*50583> (cov (NaN), NaN)
%!assert <*50583> (cov (NaN, NaN), NaN (2, 2))
%!assert <*50583> (cov (5, NaN), [0, NaN; NaN, NaN])
%!assert <*50583> (cov (NaN, 5), [NaN, NaN; NaN, 0])
%!assert <*50583> (cov (single (NaN)), single (NaN))
%!assert <*50583> (cov (NaN (2, 2)), NaN (2, 2))
%!assert <*50583> (cov (single (NaN (2, 2))), single (NaN (2, 2)))
%!assert <*50583> (cov (NaN(2, 9)), NaN(9, 9))
%!assert <*50583> (cov (NaN(9, 2)), NaN(2, 2))
%!assert <*50583> (cov ([NaN, 1, 2, NaN]), NaN)
%!assert <*50583> (cov ([1, NaN, 2, NaN]), NaN)
## Test NaN and nanflag option (bug #50571)
%!test <*50571>
%! x = magic(3);
%! y = magic(3);
%! x(3) = NaN;
%! assert (cov (y, "omitrows"), cov(y));
%! assert (cov (y, "partialrows"), cov(y));
%! assert (cov (x), [NaN, NaN, NaN; NaN, 16, -8; NaN, -8, 7]);
%! assert (cov (x, "omitrows"), ...
%! [12.5, -10, -2.5; -10, 8, 2; -2.5, 2, 0.5], eps);
%! assert (cov (x, "partialrows"),
%! [12.5, -10, -2.5; -10, 16, -8; -2.5, -8, 7], eps);
%! assert (cov (x, x), NaN(2,2));
%! assert (cov (x, y), [NaN, NaN; NaN, 7.5], eps);
%! assert (cov (y, x), [7.5, NaN; NaN, NaN], eps);
%! assert (cov (x, x, 'omitrows'), (471/56) * ones(2), eps);
%! assert (cov (x, x, 'partialrows'), (471/56) * ones(2), eps);
%! assert (cov (x, y, 'omitrows'), (471/56) * ones(2), eps);
%! assert (cov (x, y, 'partialrows'), (471/56)*[1,1;1,0] + [0,0;0,7.5], eps);
%! assert (cov (y, x, 'omitrows'), (471/56) * ones(2), eps);
%! assert (cov (y, x, 'partialrows'), (471/56)*[0,1;1,1] + [7.5,0;0,0], eps);
%! assert (cov (x, y, 0, 'omitrows'), (471/56) * ones(2), eps);
%! assert (cov (x, y, 0, 'partialrows'), (471/56)*[1,1;1,0] + [0,0;0,7.5], eps);
%!assert (cov ([NaN NaN NaN]), NaN)
%!assert <*50571> (cov ([NaN NaN NaN], "omitrows"), NaN)
%!assert <*50571> (cov ([NaN NaN NaN], "partialrows"), NaN)
%!assert (cov (NaN(3)), NaN(3))
%!assert <*50571> (cov (NaN(3), "omitrows"), NaN(3))
%!assert <*50571> (cov (NaN(3), "partialrows"), NaN(3))
%!assert (cov ([NaN NaN NaN],[1 2 3]), [NaN, NaN; NaN 1])
%!assert <*50571> (cov ([NaN NaN NaN],[1 2 3], "omitrows"), [NaN, NaN; NaN NaN])
%!assert <*50571> (cov ([NaN NaN NaN],[1 2 3], "partialrows"), [NaN, NaN; NaN 1])
%!test <*50571>
%! x = magic(3);
%! x(4:6) = NaN;
%! assert (cov (x), [7 NaN 1; NaN NaN NaN; 1 NaN 7]);
%! assert (cov (x, "omitrows"), NaN(3));
%! assert (cov (x, "partialrows"), [7 NaN 1; NaN NaN NaN; 1 NaN 7]);
%!assert <*50571> (cov (5, NaN, "omitrows"), NaN(2, 2))
%!assert <*50571> (cov (NaN, 5, "omitrows"), NaN(2, 2))
%!assert <*50571> (cov (5, NaN, "partialrows"), [0, NaN; NaN, NaN])
%!assert <*50571> (cov (NaN, 5, "partialrows"), [NaN, NaN; NaN, 0])
%!test <*50571>
%! x = [1:10]';
%! y = x;
%! x(2:2:10)=NaN;
%! y(1:2:9)=NaN;
%! assert (cov(x,y), NaN(2));
%! assert (cov(x,y,'omitrows'), NaN(2));
%! assert (cov(x,y,'partialrows'), [10 NaN; NaN, 10]);
%! x(10) = 5;
%! assert (cov(x,y), NaN(2));
%! assert (cov(x,y,'omitrows'), zeros(2));
%! assert (cov(x,y,'partialrows'), [8 0; 0, 10]);
#!assert (cov ([NaN, NaN, 3]), NaN)
#!assert <*50571> (cov ([NaN, NaN, 3], 'omitrows'), 0)
#!assert <*50571> (cov ([NaN, NaN, 3], 'partialrows'), 0)
%!assert (cov ([NaN, NaN, NaN; NaN, 2, 3; NaN, NaN, 3]), NaN(3))
%!assert <*50571> (cov ([NaN, NaN, NaN; NaN, 2, 3; NaN, NaN, 3], 'omitrows'), NaN(3))
%!assert <*50571> (cov ([NaN, NaN, NaN; NaN, 2, 3; NaN, NaN, 3], 'partialrows'), [NaN, NaN, NaN; NaN(2,1), zeros(2)])
%!assert <*50571> (cov ([NaN, NaN, NaN; NaN, 2, 3; NaN, NaN, 3], 0, 'partialrows'), [NaN, NaN, NaN; NaN(2,1), zeros(2)])
%!assert <*50571> (cov ([NaN, NaN, NaN; NaN, 2, 3; NaN, NaN, 3], 1, 'partialrows'), [NaN, NaN, NaN; NaN(2,1), zeros(2)])
%!test <*50571>
%! x = magic(4);
%! x([4 5 7 10 14 16]) = NaN;
%! x1 = x(:,2);
%! x2 = x(:,3);
%! assert (cov(x1,x2),nan(2));
%! assert (cov(x1,x2,'omitrows'),zeros(2));
%! assert (cov(x1,x2, 'partialrows'), [4.5,0;0,39],eps);
%! assert (cov(x1,x2,0,'partialrows'), [4.5,0;0,39],eps);
%! assert (cov(x1,x2,1,'partialrows'), [2.25,0;0,26],eps);
%! assert (cov(x), nan(4));
%! assert (cov(x,'omitrows'), nan(4));
%! assert (cov(x,'partialrows'), [31 0 -10.5 3.5; 0 4.5 0 NaN; -10.5 0 39 -1.5; 3.5 NaN -1.5 0.5], eps);
%! assert (cov(x, 0, 'partialrows'), [31 0 -10.5 3.5; 0 4.5 0 NaN; -10.5 0 39 -1.5; 3.5 NaN -1.5 0.5], eps);
%! assert (cov(x, 1,'partialrows'), [62/3 0 -5.25 1.75; 0 2.25 0 NaN; -5.25 0 26 -0.75; 1.75 NaN -0.75 0.25], eps);
## Test input validation
%!error <Invalid call> cov ()
%!error <Invalid call> cov (1, 2, 3, 4, 5)
%!error <X must be a> cov ("foo")
%!error <X must be a> cov ({123})
%!error <X must be a> cov (struct())
%!error <X must be a 2-D> cov (ones (2, 2, 2))
%!error <X must be a 2-D> cov (ones (1, 0, 2))
%!error <only one NANFLAG> cov (1, "foo", 0, "includenan")
%!error <only one NANFLAG> cov (1, 1, "foo", "includenan")
%!error <normalization paramter OPT must be> cov (1, 2, [])
%!error <normalization paramter OPT must be> cov (1, 2, 1.1)
%!error <normalization paramter OPT must be> cov (1, 2, -1)
%!error <normalization paramter OPT must be> cov (1, 2, [0 1])
%!error <Y must be a> cov (1, {123})
%!error <Y must be a> cov (1, struct())
%!error <X and Y must have the same number> cov (5,[1 2])
%!error <X and Y must have the same number> cov (ones (2, 2), ones (2, 2, 2))
%!error <X and Y must have the same number> cov (ones (2, 2), ones (3, 2))
%!error <X and Y must have the same number> cov (1, [])
%!error <X and Y must have the same number> cov ([1, 2], ones(1, 0, 2))
%!error <unknown NANFLAG parameter 'foo'> cov (1, "foo")
%!error <unknown NANFLAG parameter 'foo'> cov (1, "foo")
%!error <unknown NANFLAG parameter 'foo'> cov (1, 2, "foo")
%!error <unknown NANFLAG parameter 'foo'> cov (1, 2, 0, "foo")
%!error <unknown NANFLAG parameter ''> cov (1, 2, 1, [])
%!error <NANFLAG parameter must be the last> cov (1, "includenan", 1)
%!error <NANFLAG parameter must be the last> cov (1, 1, "includenan", 1)
|