1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
|
########################################################################
##
## Copyright (C) 1996-2024 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING. If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################
## -*- texinfo -*-
## @deftypefn {} {@var{pdf} =} discrete_pdf (@var{x}, @var{v}, @var{p})
## For each element of @var{x}, compute the probability density function (PDF)
## at @var{x} of a univariate discrete distribution which assumes the values
## in @var{v} with probabilities @var{p}.
## @end deftypefn
function pdf = discrete_pdf (x, v, p)
if (nargin != 3)
print_usage ();
endif
if (! isvector (v))
error ("discrete_pdf: V must be a vector");
elseif (any (isnan (v)))
error ("discrete_pdf: V must not have any NaN elements");
elseif (! isvector (p) || (length (p) != length (v)))
error ("discrete_pdf: P must be a vector with length (V) elements");
elseif (! (all (p >= 0) && any (p)))
error ("discrete_pdf: P must be a nonzero, non-negative vector");
endif
## Reshape and normalize probability vector. Values not in table get 0 prob.
p = [0 ; p(:)/sum(p)];
if (isa (x, "single") || isa (v, "single") || isa (p, "single"))
pdf = NaN (size (x), "single");
else
pdf = NaN (size (x));
endif
k = ! isnan (x);
[vs, vi] = sort (v(:));
pdf(k) = p([0 ; vi](lookup (vs, x(k), 'm') + 1) + 1);
endfunction
%!shared x,v,p,y
%! x = [-1 0.1 1.1 1.9 3];
%! v = 0.1:0.2:1.9;
%! p = 1/length (v) * ones (1, length (v));
%! y = [0 0.1 0.1 0.1 0];
%!assert (discrete_pdf ([x, NaN], v, p), [y, NaN], 5*eps)
## Test class of input preserved
%!assert (discrete_pdf (single ([x, NaN]), v, p),
%! single ([y, NaN]), 5*eps ("single"))
%!assert (discrete_pdf ([x, NaN], single (v), p),
%! single ([y, NaN]), 5*eps ("single"))
%!assert (discrete_pdf ([x, NaN], v, single (p)),
%! single ([y, NaN]), 5*eps ("single"))
## Test input validation
%!error <Invalid call> discrete_pdf ()
%!error <Invalid call> discrete_pdf (1)
%!error <Invalid call> discrete_pdf (1,2)
%!error discrete_pdf (1, ones (2), ones (2,1))
%!error discrete_pdf (1, [1 ; NaN], ones (2,1))
%!error discrete_pdf (1, ones (2,1), ones (1,1))
%!error discrete_pdf (1, ones (2,1), [1 -1])
%!error discrete_pdf (1, ones (2,1), [1 NaN])
%!error discrete_pdf (1, ones (2,1), [0 0])
|