1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
|
########################################################################
##
## Copyright (C) 2009-2024 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING. If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################
## -*- texinfo -*-
## @deftypefn {} {@var{n} =} histc (@var{x}, @var{edges})
## @deftypefnx {} {@var{n} =} histc (@var{x}, @var{edges}, @var{dim})
## @deftypefnx {} {[@var{n}, @var{idx}] =} histc (@dots{})
## Compute histogram counts.
##
## When @var{x} is a vector, the function counts the number of elements of
## @var{x} that fall in the histogram bins defined by @var{edges}. This
## must be a vector of monotonically increasing values that define the edges
## of the histogram bins.
## @tex
## $n(k)$
## @end tex
## @ifnottex
## @code{@var{n}(k)}
## @end ifnottex
## contains the number of elements in @var{x} for which
## @tex
## $@var{edges}(k) <= @var{x} < @var{edges}(k+1)$.
## @end tex
## @ifnottex
## @code{@var{edges}(k) <= @var{x} < @var{edges}(k+1)}.
## @end ifnottex
## The final element of @var{n} contains the number of elements of @var{x}
## exactly equal to the last element of @var{edges}.
##
## When @var{x} is an @math{N}-dimensional array, the computation is carried
## out along dimension @var{dim}. If not specified @var{dim} defaults to the
## first non-singleton dimension.
##
## When a second output argument is requested an index matrix is also returned.
## The @var{idx} matrix has the same size as @var{x}. Each element of
## @var{idx} contains the index of the histogram bin in which the
## corresponding element of @var{x} was counted.
## @seealso{hist}
## @end deftypefn
function [n, idx] = histc (x, edges, dim)
if (nargin < 2)
print_usage ();
endif
if (! isreal (x))
error ("histc: X argument must be real-valued, not complex");
endif
num_edges = numel (edges);
if (num_edges == 0)
warning ("histc: empty EDGES specified\n");
n = idx = [];
return;
endif
if (! isreal (edges))
error ("histc: EDGES must be real-valued, not complex");
else
## Make sure 'edges' is sorted
edges = edges(:);
if (! issorted (edges) || edges(1) > edges(end))
warning ("histc: edge values not sorted on input");
edges = sort (edges);
endif
endif
nd = ndims (x);
sz = size (x);
if (nargin < 3)
## Find the first non-singleton dimension.
(dim = find (sz > 1, 1)) || (dim = 1);
else
if (!(isscalar (dim) && dim == fix (dim))
|| !(1 <= dim && dim <= nd))
error ("histc: DIM must be an integer and a valid dimension");
endif
endif
nsz = sz;
nsz(dim) = num_edges;
## the splitting point is 3 bins
if (num_edges <= 3)
## This is the O(M*N) algorithm.
## Allocate the histogram
n = zeros (nsz);
## Allocate 'idx'
if (nargout > 1)
idx = zeros (sz);
endif
## Prepare indices
idx1 = cell (1, dim-1);
for k = 1:length (idx1)
idx1{k} = 1:sz(k);
endfor
idx2 = cell (length (sz) - dim);
for k = 1:length (idx2)
idx2{k} = 1:sz(k+dim);
endfor
## Compute the histograms
for k = 1:num_edges-1
b = (edges(k) <= x & x < edges(k+1));
n(idx1{:}, k, idx2{:}) = sum (b, dim);
if (nargout > 1)
idx(b) = k;
endif
endfor
b = (x == edges(end));
n(idx1{:}, num_edges, idx2{:}) = sum (b, dim);
if (nargout > 1)
idx(b) = num_edges;
endif
else
## This is the O(M*log(N) + N) algorithm.
## Look-up indices.
idx = lookup (edges, x);
## Zero invalid ones (including NaNs). x < edges(1) are already zero.
idx(! (x <= edges(end))) = 0;
iidx = idx;
## In case of matrix input, we adjust the indices.
if (! isvector (x))
nl = prod (sz(1:dim-1));
nn = sz(dim);
nu = prod (sz(dim+1:end));
if (nl != 1)
iidx = (iidx-1) * nl;
iidx += reshape (kron (ones (1, nn*nu), 1:nl), sz);
endif
if (nu != 1)
ne =length (edges);
iidx += reshape (kron (nl*ne*(0:nu-1), ones (1, nl*nn)), sz);
endif
endif
## Select valid elements.
iidx = iidx(idx != 0);
## Call accumarray to sum the indexed elements.
n = accumarray (iidx(:), 1, nsz);
endif
endfunction
%!test
%! x = linspace (0, 10, 1001);
%! n = histc (x, 0:10);
%! assert (n, [repmat(100, 1, 10), 1]);
%!test
%! x = repmat (linspace (0, 10, 1001), [2, 1, 3]);
%! n = histc (x, 0:10, 2);
%! assert (n, repmat ([repmat(100, 1, 10), 1], [2, 1, 3]));
## Test input validation
%!error <Invalid call> histc ()
%!error <Invalid call> histc (1)
%!error histc ([1:10 1+i], 2)
%!warning <empty EDGES specified> histc (1:10, []);
%!error histc (1, 1, 3)
|