1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
|
########################################################################
##
## Copyright (C) 1995-2024 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING. If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################
## -*- texinfo -*-
## @deftypefn {} {@var{Z} =} iqr (@var{x})
## @deftypefnx {} {@var{Z} =} iqr (@var{x}, @var{dim})
## @deftypefnx {} {@var{Z} =} iqr (@var{x}, @qcode{"ALL"})
## Return the interquartile range of @var{x}, defined as the distance between
## the 25th and 75th percentile values of @var{x} calculated using:
## quantile (x, [0.25 0.75])
##
## If @var{x} is a vector, @code{iqr (@var{x})} will operate on the data in
## @var{x}.
##
## If @var{x} is a matrix, @code{iqr (@var{x})} will operate independently on
## each column in @var{x} returning a row vector @var{Z}.
##
## If @var{x} is a n-dimensional array, @code{iqr (@var{x})} will operate
## independently on the first non-singleton dimension in @var{x}, returning an
## array @var{Z} the same shape as @var{x} with the non-singleton dimenion
## reduced to 1.
##
## The optional variable @var{dim} can be used to force @code{iqr} to operate
## over the specified dimension. @var{dim} can either be a scalar dimension or
## a vector of non-repeating dimensions over which to operate. In either case
## @var{dim} must be positive integers. A vector @var{dim} concatenates all
## specified dimensions for independent operation by @code{iqr}.
##
## Specifying dimension @qcode{"ALL"} will force @code{iqr} to operate
## on all elements of @var{x}, and is equivalent to @code{iqr (@var{x}(:))}.
## Similarly, specifying a vector dimension including all non-singleton
## dimensions of @var{x} is equivalent to @code{iqr (@var{x}, @qcode{"ALL"})}.
##
## If @var{x} is a scalar, or only singleton dimensions are specified for
## @var{dim}, the output will be @code{zeros (size (@var{x}))}.
##
## As a measure of dispersion, the interquartile range is less affected by
## outliers than either @code{range} or @code{std}.
##
## @seealso{bounds, mad, range, std, prctile, quantile}
## @end deftypefn
## TODO: When Probability Distribution Objects are implemented, enable
## handling for those object types.
function z = iqr (x, dim)
## input checks
if (nargin < 1)
print_usage ();
elseif (nargin < 2)
dim = [];
endif
if (! (isnumeric (x) || islogical (x)))
error ("iqr: X must be a numeric vector or matrix");
endif
vecdim_flag = false;
nd = ndims (x);
sz = size (x);
if (isempty (dim))
## Find first non-singleton dimension.
if (max (sz) == 1)
dim = 2;
else
dim = find ((sz > 1), 1);
endif
else
if (isvector (dim) && isnumeric (dim)
&& all (dim > 0) && all (rem (dim, 1) == 0))
if (((num_vecdims = numel (dim)) > 1) && all (diff (sort (dim))))
## DIM must be 1-D and non repeating.
## Detect trivial case of DIM being all dimensions (same as "all").
highest_dim = (max (nd, max (dim)));
if ((num_vecdims == nd) && (highest_dim == nd))
x = x(:);
sz = size (x);
dim = 1;
else
## Move dimensions for operation to the front, keeping the order of
## the remaining dimensions.
## Reshape those into a single dimension.
## Process as normal for a dim1 iqr on X, reshape when done.
vecdim_flag = true; ## flag for final reshape
if (iscolumn (dim))
dim = dim.';
endif
## Permutation vector with DIM at front
perm = [1:highest_dim];
perm(dim) = [];
perm = [dim, perm];
## Reshape X to put dims to process at front.
x = permute (x, perm);
sz_x_new = size (x);
## Preserve trailing singletons when dim > ndims (x).
sz_x_new = [sz_x_new, ones(1, highest_dim - numel (sz_x_new))];
newshape = [prod(sz_x_new(1:num_vecdims)), ...
ones(1, (num_vecdims-1)), ...
sz_x_new((num_vecdims+1):end)];
if (numel (newshape) == 1)
newshape = [newshape, 1];
endif
## Collapse dimensions to be processses into single column.
x = reshape (x, newshape);
## Operate column-wise.
dim = 1;
endif
elseif (! isscalar (dim))
error ("iqr: vector DIM must contain non-repeating positive integers");
endif
elseif (strcmp (lower (dim), "all"))
## "ALL" simplifies to collapsing all elements to single vector
x = x(:);
dim = 1;
sz = size (x);
else
error ("iqr: DIM must be a positive integer scalar, vector, or 'all'");
endif
endif
if (((dim > nd) || (sz(dim) == 1)) && all (isfinite (x)))
## shortcut easy zeros
z = zeros (sz);
elseif (iscolumn (x) && (dim == 1))
## detect col vector with quantile/diff dim requirement mismatch
z = abs (diff (quantile (x, [0.25, 0.75], 1), [], 2));
else
z = abs (diff (quantile (x, [0.25, 0.75], dim), [], dim));
endif
if (vecdim_flag)
z = ipermute (z, perm);
endif
endfunction
%!assert (iqr (17), 0)
%!assert (iqr (17, 1), 0)
%!assert (iqr (17, 4), 0)
%!assert (iqr (1:3), 1.5)
%!assert (iqr (1:4), 2)
%!assert (iqr (1:5), 2.5)
%!assert (iqr (1:10), 5)
%!assert (iqr ((1:10).'), 5)
%!assert (iqr (1:10, 2), 5)
%!assert (iqr (1:10, 1), zeros (1, 10))
%!assert (iqr (1:10, 3), zeros (1, 10))
%!assert (iqr ([1:5; 2:6], "all"), 3)
%!test
%! x = reshape (1:6, [1 2 3]);
%! assert (iqr (x), ones (1, 1, 3));
%! assert (iqr (x, 1), zeros (1, 2, 3));
%! assert (iqr (x, 2), ones (1, 1, 3));
%! assert (iqr (x, 3), [3 3]);
## n-D arrays
%!test
%! x = magic (4); x = cat (3,x, 2*x, 3*x); x = cat (4, x, 2*x);
%! y = cat (3, 8*[1 1 1 1], 16*[1 1 1 1], 24*[1 1 1 1]);
%! assert (iqr (x), cat (4, y, 2*y));
%! assert (iqr (x, 1), cat (4, y, 2*y));
%! y = cat (3, 4*[3 1 1 3].', 8*[3 1 1 3].', 12*[3 1 1 3].');
%! assert (iqr (x, 2), cat (4, y, 2*y));
%! y = [24 3 4.5 19.5; 7.5 16.5 15 12; 13.5 10.5 9, 18; 6 21 22.5 1.5];
%! assert (iqr (x, 3), cat (4, y, 2*y));
%! y = [16 2 3 13; 5 11 10 8; 9 7 6 12; 4 14 15 1];
%! assert (iqr (x, 4), cat (3, y, 2*y, 3*y));
%! assert (iqr (x, 5), zeros (size (x)));
## vector dimensions
%!assert (iqr (17, [1 8]), 0)
%!assert (iqr ([[1 2 5]; [2 5 6]], [1 2]), 3)
%!assert (iqr (cat (3, [1 2 5; 2 5 6], [1 2 5; 2 5 6]), [1 2]), cat(3, 3, 3))
%!assert (iqr (cat (3, [1 2 5; 2 5 6], [1 2 5; 2 5 6]), [1 2]'), cat(3, 3, 3))
%!test
%! x = magic (4); x = cat (3, x, 2*x, 3*x); x = cat (4, x, 2*x);
%! y = cat (3, 8, 16, 24);
%! assert (iqr (x, [1 2]), cat (4, y, 2*y));
%! y = [14, 18.5, 17.5 19.5];
%! assert (iqr (x, [1 3]), cat (4, y, 2*y));
%! y = [10.5 12.5 11.5 15.0000];
%! assert (iqr (x, [1 4]), cat (3, y, 2*y, 3*y));
%! assert (iqr (x, [1 5]), iqr (x, 1));
%! y = [24 13 12 25.5]';
%! assert (iqr (x, [2 3]), cat (4, y, 2*y));
%! y = [17.5, 9, 8, 18.5]';
%! assert (iqr (x, [2 4]), cat (3, y, 2*y, 3*y));
%! assert (iqr (x, [3 4]), [32 4 6 26; 10 22 20 16; 18 14 12 24; 8 28 30 2]);
%! assert (iqr (x, [3 4]), iqr (x, [4 3]));
%! assert (iqr (x, [1 2 3]), cat (4, 17.5, 35));
%! assert (iqr (x, [2 3 4]), [29.5 19.5 23 31]');
%! assert (iqr (x, [1 3 4]), [22 28 22 30.5]);
%! assert (iqr (x, [1 2 4]), cat (3, 11, 22, 33));
%! assert (iqr (x, [1 2 5]), iqr (x, [1 2]));
%! assert (iqr (x, [5 6]), zeros (size (x)));
## Inf, NaN
%!assert (iqr (Inf), NaN)
%!assert (iqr (-Inf), NaN)
%!assert (iqr (NaN), NaN)
%!assert (iqr (NaN), NaN)
%!assert (iqr ([1 2 Inf], 1), [0 0 NaN])
%!assert (iqr ([1 2 Inf], 2), Inf)
%!assert (iqr ([1 2 -Inf], 1), [0 0 NaN])
%!assert (iqr ([1 2 -Inf], 2), Inf)
%!assert (iqr ([1 2 3 NaN], 1), [0 0 0 NaN])
%!assert (iqr ([1 2 3 NaN], 2), 1.5)
%!assert (iqr ([1 NaN 2 3], 2), 1.5)
%!assert (iqr (NaN (2), 1), [NaN, NaN])
%!assert (iqr (NaN (2), 2), [NaN; NaN])
%!assert (iqr (NaN (2), 3), NaN (2))
%!assert (iqr ([[1 2 5], [2 NaN 6]], "all"), 3.5)
## input validation
%!error iqr ()
%!error iqr (1, 2, 3)
%!error <X .* numeric> iqr (['A'; 'B'])
%!error <DIM .* positive integer> iqr (1, 'A')
%!error <DIM .* positive integer> iqr (1, 0)
%!error <DIM .* positive integer> iqr (1, -2)
%!error <DIM .* positive integer> iqr (1, 1.4)
%!error <DIM .* positive integer> iqr (1, [1 -2])
%!error <DIM .* positive integer> iqr (1, [1 1.4])
%!error <DIM .* positive integer> iqr ([1 2 3], NaN)
%!error <DIM .* positive integer> iqr ([1 2 3], [2 NaN])
%!error <DIM .* positive integer> iqr ([1 2 3], Inf)
%!error <DIM .* positive integer> iqr ([1 2 3], [2 Inf])
%!error <vector DIM .* non-repeating> iqr ([1 2 3], [1 2 1])
%!error <DIM .* vector> iqr (1, [1 2; 3 4])
|