File: iqr.m

package info (click to toggle)
octave 9.4.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 144,300 kB
  • sloc: cpp: 332,784; ansic: 77,239; fortran: 20,963; objc: 9,396; sh: 8,213; yacc: 4,925; lex: 4,389; perl: 1,544; java: 1,366; awk: 1,259; makefile: 648; xml: 189
file content (271 lines) | stat: -rw-r--r-- 9,490 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
########################################################################
##
## Copyright (C) 1995-2024 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################

## -*- texinfo -*-
## @deftypefn  {} {@var{Z} =} iqr (@var{x})
## @deftypefnx {} {@var{Z} =} iqr (@var{x}, @var{dim})
## @deftypefnx {} {@var{Z} =} iqr (@var{x}, @qcode{"ALL"})
## Return the interquartile range of @var{x}, defined as the distance between
## the 25th and 75th percentile values of @var{x} calculated using:
##    quantile (x, [0.25 0.75])
##
## If @var{x} is a vector, @code{iqr (@var{x})} will operate on the data in
## @var{x}.
##
## If @var{x} is a matrix, @code{iqr (@var{x})} will operate independently on
## each column in @var{x} returning a row vector @var{Z}.
##
## If @var{x} is a n-dimensional array, @code{iqr (@var{x})} will operate
## independently on the first non-singleton dimension in @var{x}, returning an
## array @var{Z} the same shape as @var{x} with the non-singleton dimenion
## reduced to 1.
##
## The optional variable @var{dim} can be used to force @code{iqr} to operate
## over the specified dimension.  @var{dim} can either be a scalar dimension or
## a vector of non-repeating dimensions over which to operate.  In either case
## @var{dim} must be positive integers.  A vector @var{dim} concatenates all
## specified dimensions for independent operation by @code{iqr}.
##
## Specifying dimension @qcode{"ALL"} will force @code{iqr} to operate
## on all elements of @var{x}, and is equivalent to @code{iqr (@var{x}(:))}.
## Similarly, specifying a vector dimension including all non-singleton
## dimensions of @var{x} is equivalent to @code{iqr (@var{x}, @qcode{"ALL"})}.
##
## If @var{x} is a scalar, or only singleton dimensions are specified for
## @var{dim}, the output will be @code{zeros (size (@var{x}))}.
##
## As a measure of dispersion, the interquartile range is less affected by
## outliers than either @code{range} or @code{std}.
##
## @seealso{bounds, mad, range, std, prctile, quantile}
## @end deftypefn

## TODO:  When Probability Distribution Objects are implemented, enable
##        handling for those object types.

function z = iqr (x, dim)

  ## input checks
  if (nargin < 1)
    print_usage ();
  elseif (nargin < 2)
    dim = [];
  endif

  if (! (isnumeric (x) || islogical (x)))
    error ("iqr: X must be a numeric vector or matrix");
  endif

  vecdim_flag = false;
  nd = ndims (x);
  sz = size (x);

  if (isempty (dim))
    ## Find first non-singleton dimension.
    if (max (sz) == 1)
      dim = 2;
    else
      dim = find ((sz > 1), 1);
    endif
  else

    if (isvector (dim) && isnumeric (dim)
        && all (dim > 0) && all (rem (dim, 1) == 0))

      if (((num_vecdims = numel (dim)) > 1) && all (diff (sort (dim))))
        ## DIM must be 1-D and non repeating.

        ## Detect trivial case of DIM being all dimensions (same as "all").
        highest_dim = (max (nd, max (dim)));
        if ((num_vecdims == nd) && (highest_dim == nd))
          x = x(:);
          sz = size (x);
          dim = 1;
        else
          ## Move dimensions for operation to the front, keeping the order of
          ## the remaining dimensions.
          ## Reshape those into a single dimension.
          ## Process as normal for a dim1 iqr on X, reshape when done.

          vecdim_flag = true;  ## flag for final reshape

          if (iscolumn (dim))
            dim = dim.';
          endif

          ## Permutation vector with DIM at front
          perm = [1:highest_dim];
          perm(dim) = [];
          perm = [dim, perm];

          ## Reshape X to put dims to process at front.
          x = permute (x, perm);
          sz_x_new = size (x);

          ## Preserve trailing singletons when dim > ndims (x).
          sz_x_new = [sz_x_new, ones(1, highest_dim - numel (sz_x_new))];

          newshape = [prod(sz_x_new(1:num_vecdims)), ...
                      ones(1, (num_vecdims-1)), ...
                      sz_x_new((num_vecdims+1):end)];

          if (numel (newshape) == 1)
            newshape = [newshape, 1];
          endif

          ## Collapse dimensions to be processses into single column.
          x = reshape (x, newshape);

          ## Operate column-wise.
          dim = 1;
        endif

      elseif (! isscalar (dim))
        error ("iqr: vector DIM must contain non-repeating positive integers");
      endif

    elseif (strcmp (lower (dim), "all"))
      ## "ALL" simplifies to collapsing all elements to single vector
      x = x(:);
      dim = 1;
      sz = size (x);

    else
      error ("iqr: DIM must be a positive integer scalar, vector, or 'all'");
    endif

  endif

  if (((dim > nd) || (sz(dim) == 1)) && all (isfinite (x)))
    ## shortcut easy zeros
    z = zeros (sz);
  elseif (iscolumn (x) && (dim == 1))
    ## detect col vector with quantile/diff dim requirement mismatch
    z = abs (diff (quantile (x, [0.25, 0.75], 1), [], 2));
  else
    z = abs (diff (quantile (x, [0.25, 0.75], dim), [], dim));
  endif

  if (vecdim_flag)
    z = ipermute (z, perm);
  endif

endfunction


%!assert (iqr (17), 0)
%!assert (iqr (17, 1), 0)
%!assert (iqr (17, 4), 0)
%!assert (iqr (1:3), 1.5)
%!assert (iqr (1:4), 2)
%!assert (iqr (1:5), 2.5)
%!assert (iqr (1:10), 5)
%!assert (iqr ((1:10).'), 5)
%!assert (iqr (1:10, 2), 5)
%!assert (iqr (1:10, 1), zeros (1, 10))
%!assert (iqr (1:10, 3), zeros (1, 10))
%!assert (iqr ([1:5; 2:6], "all"), 3)

%!test
%! x = reshape (1:6, [1 2 3]);
%! assert (iqr (x), ones (1, 1, 3));
%! assert (iqr (x, 1), zeros (1, 2, 3));
%! assert (iqr (x, 2), ones (1, 1, 3));
%! assert (iqr (x, 3), [3 3]);

## n-D arrays
%!test
%! x = magic (4); x = cat (3,x, 2*x, 3*x); x = cat (4, x, 2*x);
%! y = cat (3, 8*[1 1 1 1], 16*[1 1 1 1], 24*[1 1 1 1]);
%! assert (iqr (x), cat (4, y, 2*y));
%! assert (iqr (x, 1), cat (4, y, 2*y));
%! y = cat (3, 4*[3 1 1 3].', 8*[3 1 1 3].', 12*[3 1 1 3].');
%! assert (iqr (x, 2), cat (4, y, 2*y));
%! y = [24 3 4.5 19.5; 7.5 16.5 15 12; 13.5 10.5 9, 18; 6 21 22.5 1.5];
%! assert (iqr (x, 3), cat (4, y, 2*y));
%! y = [16 2 3 13; 5 11 10 8; 9 7 6 12; 4 14 15 1];
%! assert (iqr (x, 4), cat (3, y, 2*y, 3*y));
%! assert (iqr (x, 5), zeros (size (x)));

## vector dimensions
%!assert (iqr (17, [1 8]), 0)
%!assert (iqr ([[1 2 5]; [2 5 6]], [1 2]), 3)
%!assert (iqr (cat (3, [1 2 5; 2 5 6], [1 2 5; 2 5 6]), [1 2]), cat(3, 3, 3))
%!assert (iqr (cat (3, [1 2 5; 2 5 6], [1 2 5; 2 5 6]), [1 2]'), cat(3, 3, 3))
%!test
%! x = magic (4); x = cat (3, x, 2*x, 3*x); x = cat (4, x, 2*x);
%! y = cat (3, 8, 16, 24);
%! assert (iqr (x, [1 2]), cat (4, y, 2*y));
%! y = [14, 18.5, 17.5 19.5];
%! assert (iqr (x, [1 3]), cat (4, y, 2*y));
%! y = [10.5 12.5 11.5 15.0000];
%! assert (iqr (x, [1 4]), cat (3, y, 2*y, 3*y));
%! assert (iqr (x, [1 5]), iqr (x, 1));
%! y = [24 13 12 25.5]';
%! assert (iqr (x, [2 3]), cat (4, y, 2*y));
%! y = [17.5, 9, 8, 18.5]';
%! assert (iqr (x, [2 4]), cat (3, y, 2*y, 3*y));
%! assert (iqr (x, [3 4]), [32 4 6 26; 10 22 20 16; 18 14 12 24; 8 28 30 2]);
%! assert (iqr (x, [3 4]), iqr (x, [4 3]));
%! assert (iqr (x, [1 2 3]), cat (4, 17.5, 35));
%! assert (iqr (x, [2 3 4]), [29.5 19.5 23 31]');
%! assert (iqr (x, [1 3 4]), [22 28 22 30.5]);
%! assert (iqr (x, [1 2 4]), cat (3, 11, 22, 33));
%! assert (iqr (x, [1 2 5]), iqr (x, [1 2]));
%! assert (iqr (x, [5 6]), zeros (size (x)));

## Inf, NaN
%!assert (iqr (Inf), NaN)
%!assert (iqr (-Inf), NaN)
%!assert (iqr (NaN), NaN)
%!assert (iqr (NaN), NaN)
%!assert (iqr ([1 2 Inf], 1), [0 0 NaN])
%!assert (iqr ([1 2 Inf], 2), Inf)
%!assert (iqr ([1 2 -Inf], 1), [0 0 NaN])
%!assert (iqr ([1 2 -Inf], 2), Inf)
%!assert (iqr ([1 2 3 NaN], 1), [0 0 0 NaN])
%!assert (iqr ([1 2 3 NaN], 2), 1.5)
%!assert (iqr ([1 NaN 2 3], 2), 1.5)
%!assert (iqr (NaN (2), 1), [NaN, NaN])
%!assert (iqr (NaN (2), 2), [NaN; NaN])
%!assert (iqr (NaN (2), 3), NaN (2))
%!assert (iqr ([[1 2 5], [2 NaN 6]], "all"), 3.5)

## input validation
%!error iqr ()
%!error iqr (1, 2, 3)
%!error <X .* numeric> iqr (['A'; 'B'])
%!error <DIM .* positive integer> iqr (1, 'A')
%!error <DIM .* positive integer> iqr (1, 0)
%!error <DIM .* positive integer> iqr (1, -2)
%!error <DIM .* positive integer> iqr (1, 1.4)
%!error <DIM .* positive integer> iqr (1, [1 -2])
%!error <DIM .* positive integer> iqr (1, [1 1.4])
%!error <DIM .* positive integer> iqr ([1 2 3], NaN)
%!error <DIM .* positive integer> iqr ([1 2 3], [2 NaN])
%!error <DIM .* positive integer> iqr ([1 2 3], Inf)
%!error <DIM .* positive integer> iqr ([1 2 3], [2 Inf])
%!error <vector DIM .* non-repeating> iqr ([1 2 3], [1 2 1])
%!error <DIM .* vector> iqr (1, [1 2; 3 4])