File: kendall.m

package info (click to toggle)
octave 9.4.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 144,300 kB
  • sloc: cpp: 332,784; ansic: 77,239; fortran: 20,963; objc: 9,396; sh: 8,213; yacc: 4,925; lex: 4,389; perl: 1,544; java: 1,366; awk: 1,259; makefile: 648; xml: 189
file content (156 lines) | stat: -rw-r--r-- 3,929 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
########################################################################
##
## Copyright (C) 1995-2024 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################

## -*- texinfo -*-
## @deftypefn  {} {@var{tau} =} kendall (@var{x})
## @deftypefnx {} {@var{tau} =} kendall (@var{x}, @var{y})
## @cindex Kendall's Tau
## Compute Kendall's
## @tex
## $\tau$.
## @end tex
## @ifnottex
## @var{tau}.
## @end ifnottex
##
## For two data vectors @var{x}, @var{y} of common length @math{N}, Kendall's
## @tex
## $\tau$
## @end tex
## @ifnottex
## @var{tau}
## @end ifnottex
## is the correlation of the signs of all rank differences of
## @var{x} and @var{y}; i.e., if both @var{x} and @var{y} have distinct
## entries, then
##
## @tex
## $$ \tau = {1 \over N(N-1)} \sum_{i,j} {\rm sign}(q_i-q_j) \, {\rm sign}(r_i-r_j) $$
## @end tex
## @ifnottex
##
## @example
## @group
##          1
## @var{tau} = -------   SUM sign (@var{q}(i) - @var{q}(j)) * sign (@var{r}(i) - @var{r}(j))
##       N (N-1)   i,j
## @end group
## @end example
##
## @end ifnottex
## @noindent
## in which the
## @tex
## $q_i$ and $r_i$
## @end tex
## @ifnottex
## @var{q}(i) and @var{r}(i)
## @end ifnottex
## are the ranks of @var{x} and @var{y}, respectively.
##
## If @var{x} and @var{y} are drawn from independent distributions,
## Kendall's
## @tex
## $\tau$
## @end tex
## @ifnottex
## @var{tau}
## @end ifnottex
## is asymptotically normal with mean 0 and variance
## @tex
## ${2 (2N+5) \over 9N(N-1)}$.
## @end tex
## @ifnottex
## @code{(2 * (2N+5)) / (9 * N * (N-1))}.
## @end ifnottex
##
## @code{kendall (@var{x})} is equivalent to @code{kendall (@var{x},
## @var{x})}.
## @seealso{ranks, spearman}
## @end deftypefn

function tau = kendall (x, y = [])

  if (nargin < 1)
    print_usage ();
  endif

  if (   ! (isnumeric (x) || islogical (x))
      || ! (isnumeric (y) || islogical (y)))
    error ("kendall: X and Y must be numeric matrices or vectors");
  endif

  if (ndims (x) != 2 || ndims (y) != 2)
    error ("kendall: X and Y must be 2-D matrices or vectors");
  endif

  if (isrow (x))
    x = x.';
  endif
  [n, c] = size (x);

  if (nargin == 2)
    if (isrow (y))
      y = y.';
    endif
    if (rows (y) != n)
      error ("kendall: X and Y must have the same number of observations");
    else
      x = [x, y];
    endif
  endif

  if (isa (x, "single") || isa (y, "single"))
    cls = "single";
  else
    cls = "double";
  endif
  r   = ranks (x);
  m   = sign (kron (r, ones (n, 1, cls)) - kron (ones (n, 1, cls), r));
  tau = corr (m);

  if (nargin == 2)
    tau = tau(1 : c, (c + 1) : columns (x));
  endif

endfunction


%!test
%! x = [1:2:10];
%! y = [100:10:149];
%! assert (kendall (x,y), 1, 5*eps);
%! assert (kendall (x,fliplr (y)), -1, 5*eps);

%!assert (kendall (1), NaN)
%!assert (kendall (single (1)), single (NaN))

## Test input validation
%!error <Invalid call> kendall ()
%!error kendall (['A'; 'B'])
%!error kendall (ones (2,1), ['A'; 'B'])
%!error kendall (ones (2,2,2))
%!error kendall (ones (2,2), ones (2,2,2))
%!error kendall (ones (2,2), ones (3,2))