1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
|
########################################################################
##
## Copyright (C) 2017-2024 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING. If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################
## -*- texinfo -*-
## @deftypefn {} {@var{m} =} mad (@var{x})
## @deftypefnx {} {@var{m} =} mad (@var{x}, @var{opt})
## @deftypefnx {} {@var{m} =} mad (@var{x}, @var{opt}, @var{dim})
## @deftypefnx {} {@var{m} =} mad (@var{x}, @var{opt}, @var{vecdim})
## @deftypefnx {} {@var{m} =} mad (@var{x}, @var{opt}, "all")
## Compute the mean or median absolute deviation (MAD) of the elements of
## @var{x}.
##
## The mean absolute deviation is defined as
##
## @example
## @var{mad} = mean (abs (@var{x} - mean (@var{x})))
## @end example
##
## The median absolute deviation is defined as
##
## @example
## @var{mad} = median (abs (@var{x} - median (@var{x})))
## @end example
##
## If @var{x} is a vector, compute @code{mad} for each element in @var{x}. If
## @var{x} is an array the calculation is performed over the first
## non-singleton dimension.
##
## @code{mad} excludes NaN values from calculation similar to using the
## @code{omitnan} option in @code{var}, @code{mean}, and @code{median}.
##
## The optional argument @var{opt} determines whether mean or median absolute
## deviation is calculated. The default is 0 which corresponds to mean
## absolute deviation; a value of 1 corresponds to median absolute deviation.
## Passing an empty input [] defaults to mean absolute deviation
## (@var{opt} = 0).
##
## The optional argument @var{dim} forces @code{mad} to operate along the
## specified dimension. Specifying any singleton dimension in @var{x},
## including any dimension exceeding @code{ndims (@var{x})}, will result in
## an output of 0.
##
## Specifying the dimension as @var{vecdim}, a vector of non-repeating
## dimensions, will return the @code{mad} over the array slice defined by
## @var{vecdim}. If @var{vecdim} indexes all dimensions of @var{x}, then it is
## equivalent to the option @qcode{"all"}. Any dimension included in
## @var{vecdim} greater than @code{ndims (@var{x})} is ignored.
##
## Specifying the dimension as @qcode{"all"} will force @code{mad} to operate
## on all elements of @var{x}, and is equivalent to @code{mad (@var{x}(:))}.
##
## As a measure of dispersion, @code{mad} is less affected by outliers than
## @code{std}.
## @seealso{bounds, range, iqr, std, mean, median}
## @end deftypefn
function m = mad (x, opt = 0, dim)
if (nargin < 1)
print_usage ();
endif
if (! (isnumeric (x) || islogical (x)))
error ("mad: X must be a numeric vector or matrix");
endif
if (isempty (opt))
opt = 0;
elseif (! isscalar (opt) || (opt != 0 && opt != 1))
error ("mad: OPT must be 0 or 1");
endif
if (nargin < 3)
## Dim not provided
## First check for special empty case.
if (isempty (x) && ndims (x) == 2 && size (x) == [0, 0])
if (isa (x, "single"))
m = NaN ("single");
else
m = NaN;
endif
return;
endif
## Then find the first non-singleton dimension.
(dim = find (size (x) != 1, 1)) || (dim = 1);
endif
if (opt == 0)
fcn = @mean;
else
fcn = @median;
endif
m = fcn (abs (x - fcn (x, dim, "omitnan")), dim, "omitnan");
endfunction
%!assert (mad (123), 0)
%!assert (mad (Inf), NaN)
%!assert (mad ([3, Inf]),Inf)
%!assert (mad ([0, 0, 1, 2, 100]), 31.76)
%!assert (mad (single ([0, 0, 1, 2, 100])), single (31.76))
%!assert (mad ([0, 0, 1, 2, 100]'), 31.76)
%!assert (mad ([0, 0, 1, 2, 100], 1), 1)
%!assert (mad (single ([0, 0, 1, 2, 100]), 1), single (1))
%!assert (mad ([0, 0, 1, 2, 100]', 1), 1)
%!assert (mad (magic (4)), [4, 4, 4, 4])
%!assert (mad (magic (4), [], 2), [6; 2; 2; 6])
%!assert (mad (magic (4), 1), [2.5, 3.5, 3.5, 2.5])
%!assert (mad (magic (4), 1, 2), [5.5; 1.5; 1.5; 5.5])
%!assert (mad (magic (4), 0, 3), zeros (4))
%!assert (mad (magic (4), 1, 3), zeros (4))
%!assert (mad (cat (3, magic (4), magic (4))), 4 * ones (1, 4, 2))
## Test all and vecdim options
%!assert (mad (magic (4), 0, "all"), 4)
%!assert (mad (magic (4), 1, "all"), 4)
%!assert (mad (magic (4), 0, [1 2]), 4)
%!assert (mad (magic (4), 0, [1 3]), mad (magic (4), 0, 1))
%!assert (mad (magic (4), 0, [1 2 3]), 4)
%!assert (mad (magic (4), 1, [1 2]), 4)
%!assert (mad (magic (4), 1, [1 3]), mad (magic (4), 1, 1))
%!assert (mad (magic (4), 1, [1 2 3]), 4)
%!assert (mad (magic (4), 0, [3 4 99]), zeros (4))
%!assert (mad (magic (4), 1, [3 4 99]), zeros (4))
## Verify ignoring NaN values unless all NaN
%!assert (mad (NaN), NaN)
%!assert (mad (NaN (2)), NaN (1, 2))
%!assert (mad ([1, 2; 3, NaN]), [1, 0])
%!assert (mad ([1, 2; 3, NaN], [], 1), [1, 0])
%!assert (mad ([1, 2; 3, NaN], [], 2), [0.5; 0], eps)
%!assert (mad ([1, NaN; 3, NaN], [], 1), [1, NaN])
%!assert (mad ([1, NaN; 3, NaN], [], 2), [0; 0])
## Verify compatible empty handling
%!assert (mad ([]), NaN)
%!assert (mad ([], 0, 1), NaN (1,0))
%!assert (mad ([], 0, 2), NaN (0,1))
%!assert (mad ([], 0, 3), NaN (0,0))
%!assert (mad (single ([])), NaN ('single'))
%!assert (mad (ones (0, 1)), NaN)
%!assert (mad (ones (0, 1), 0, 1), NaN (1, 1))
%!assert (mad (ones (0, 1), 0, 2), NaN (0, 1))
%!assert (mad (ones (0, 1), 0, 3), NaN (0, 1))
%!assert (mad (ones (1, 0)), NaN)
%!assert (mad (ones (1, 0), 0, 1), NaN (1, 0))
%!assert (mad (ones (1, 0), 0, 2), NaN (1, 1))
%!assert (mad (ones (1, 0), 0, 3), NaN (1, 0))
%!assert (mad (ones (0, 0, 0)), NaN (1, 0, 0))
%!assert (mad (ones (1, 0, 0)), NaN (1, 1, 0))
%!assert (mad (ones (0, 1, 0)), NaN (1, 1, 0))
%!assert (mad (ones (0, 0, 0)), NaN (1, 0, 0))
%!assert (mad (ones (0, 1, 0), 0, 1), NaN (1, 1, 0))
%!assert (mad (ones (0, 1, 0), 0, 2), NaN (0, 1, 0))
%!assert (mad (ones (0, 1, 0), 0, 3), NaN (0, 1, 1))
%!assert (mad (ones (0, 1, 0), 0, 4), NaN (0, 1, 0))
%!assert (mad (ones (0, 2, 1, 0)), ones (1, 2, 1, 0))
%!assert (mad (ones (2, 0, 1, 0)), ones (1, 0, 1, 0))
## Test Inf handling
%!assert (mad ([3, 4, Inf]), Inf)
%!assert (mad ([Inf, 3, 4]), Inf)
%!assert (mad ([3, 4, Inf], 0), Inf)
%!assert (mad ([3, 4, Inf], 0, 1), [0, 0, NaN])
%!assert (mad ([3, 4, Inf], 0, 2), Inf)
%!assert (mad ([3, 4, Inf], 0, 3), [0, 0, NaN])
%!assert (mad ([3, 4, Inf]', 0), Inf)
%!assert (mad ([3, 4, Inf]', 0, 1), Inf)
%!assert (mad ([3, 4, Inf]', 0, 2), [0; 0; NaN])
%!assert (mad ([3, 4, Inf]', 0, 3), [0; 0; NaN])
%!assert (mad ([Inf, 3, 4], 1), 1)
%!assert (mad ([3, 4, Inf], 1), 1)
%!assert (mad ([3, 4, Inf], 1, 1), [0, 0, NaN])
%!assert (mad ([3, 4, Inf], 1, 2), 1)
%!assert (mad ([3, 4, Inf], 1, 3), [0, 0, NaN])
%!assert (mad ([3, 4, Inf]', 1), 1)
%!assert (mad ([3, 4, Inf]', 1, 1), 1)
%!assert (mad ([3, 4, Inf]', 1, 2), [0; 0; NaN])
%!assert (mad ([3, 4, Inf]', 1, 3), [0; 0; NaN])
%!assert (mad ([3, Inf, Inf], 1), Inf)
%!assert (mad ([3, 4, 5, Inf], 1), 1)
%!assert (mad ([3, 4, Inf, Inf], 1), Inf)
%!assert (mad ([3, Inf, Inf, Inf], 1), Inf)
%!assert <*65405> (mad ([-Inf, Inf]), NaN)
%!assert <*65405> (mad ([-Inf, Inf], 0), NaN)
%!assert <*65405> (mad ([-Inf, Inf], 1), NaN)
%!assert <*65405> (mad ([-Inf, Inf]', 0), NaN)
%!assert <*65405> (mad ([-Inf, Inf]', 1), NaN)
%!assert <*65405> (mad ([-Inf, Inf]', 0, 1), NaN)
%!assert <*65405> (mad ([-Inf, Inf]', 0, 2), [NaN; NaN])
%!assert <*65405> (mad ([-Inf, Inf]', 0, 3), [NaN; NaN])
%!assert <*65405> (mad ([-Inf, Inf]', 1, 1), NaN)
%!assert <*65405> (mad ([-Inf, Inf]', 1, 2), [NaN; NaN])
%!assert <*65405> (mad ([-Inf, Inf]', 1, 3), [NaN; NaN])
%!assert <*65405> (mad (Inf (2), 0), [NaN, NaN])
%!assert <*65405> (mad (Inf (2), 1), [NaN, NaN])
%!assert <*65405> (mad (Inf (2), 0, 1), [NaN, NaN])
%!assert <*65405> (mad (Inf (2), 0, 2), [NaN; NaN])
%!assert <*65405> (mad (Inf (2), 0, 3), NaN (2))
%!assert <*65405> (mad (Inf (2), 1, 1), [NaN, NaN])
%!assert <*65405> (mad (Inf (2), 1, 2), [NaN; NaN])
%!assert <*65405> (mad (Inf (2), 1, 3), NaN (2))
## Test input case insensitivity
%!assert (mad ([1 2 3], 0, "aLL"), 2/3, eps)
%!assert (mad ([1 2 3], 1, "aLL"), 1)
## Test input validation
%!error <Invalid call> mad ()
%!error <X must be a numeric> mad (['A'; 'B'])
%!error <OPT must be 0 or 1> mad (1, 2)
|