1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639
|
########################################################################
##
## Copyright (C) 1995-2024 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING. If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################
## -*- texinfo -*-
## @deftypefn {} {@var{m} =} mean (@var{x})
## @deftypefnx {} {@var{m} =} mean (@var{x}, @var{dim})
## @deftypefnx {} {@var{m} =} mean (@var{x}, @var{vecdim})
## @deftypefnx {} {@var{m} =} mean (@var{x}, "all")
## @deftypefnx {} {@var{m} =} mean (@dots{}, @var{nanflag})
## @deftypefnx {} {@var{m} =} mean (@dots{}, @var{outtype})
## Compute the mean of the elements of @var{x}.
##
## If @var{x} is a vector, then @code{mean (@var{x})} returns the mean of the
## elements in @var{x} defined as
## @tex
## $$ {\rm mean}(x) = \bar{x} = {1\over N} \sum_{i=1}^N x_i $$
## where $N$ is the number of elements of @var{x}.
## @end tex
## @ifnottex
##
## @example
## mean (@var{x}) = SUM_i @var{x}(i) / N
## @end example
##
## @noindent
## where @math{N} is the number of elements in @var{x}.
##
## @end ifnottex
##
## If @var{x} is an array, then @code{mean(@var{x})} computes the mean along
## the first non-singleton dimension of @var{x}.
##
## The optional variable @var{dim} forces @code{mean} to operate over the
## specified dimension, which must be a positive integer-valued number.
## Specifying any singleton dimension in @var{x}, including any dimension
## exceeding @code{ndims (@var{x})}, will result in a mean equal to @var{x}.
##
## Specifying the dimensions as @var{vecdim}, a vector of non-repeating
## dimensions, will return the mean over the array slice defined by
## @var{vecdim}. If @var{vecdim} indexes all dimensions of @var{x}, then it is
## equivalent to the option @qcode{"all"}. Any dimension in @var{vecdim}
## greater than @code{ndims (@var{x})} is ignored.
##
## Specifying the dimension as @qcode{"all"} will force @code{mean} to operate
## on all elements of @var{x}, and is equivalent to @code{mean (@var{x}(:))}.
##
## The optional input @var{outtype} specifies the data type that is returned.
## @var{outtype} can take the following values:
##
## @table @asis
## @item @qcode{'default'} : Output is of type double, unless the input is
## single in which case the output is of type single.
##
## @item @qcode{'double'} : Output is of type double.
##
## @item @qcode{'native'} : Output is of the same type as the input as reported
## by (@code{class (@var{x})}), unless the input is logical in which case the
## output is of type double.
## @end table
##
## The optional variable @var{nanflag} specifies whether to include or exclude
## NaN values from the calculation using any of the previously specified input
## argument combinations. The default value for @var{nanflag} is
## @qcode{"includenan"} which keeps NaN values in the calculation. To exclude
## NaN values set the value of @var{nanflag} to @qcode{"omitnan"}. The output
## will still contain NaN values if @var{x} consists of all NaN values in the
## operating dimension.
##
## @seealso{median, mode, movmean}
## @end deftypefn
function m = mean (x, varargin)
if (nargin < 1 || nargin > 4)
print_usage ();
endif
## Set initial conditions
all_flag = false;
omitnan = false;
out_flag = false;
nvarg = numel (varargin);
varg_chars = cellfun ("ischar", varargin);
outtype = "default";
szx = size (x);
ndx = ndims (x);
if (nvarg > 1 && ! varg_chars(2:end))
## Only first varargin can be numeric
print_usage ();
endif
## Process any other char arguments.
if (any (varg_chars))
for argin = varargin(varg_chars)
switch (lower (argin{:}))
case "all"
all_flag = true;
case "omitnan"
omitnan = true;
case "includenan"
omitnan = false;
case "default"
if (out_flag)
error ("mean: only one OUTTYPE can be specified");
endif
if (isa (x, "single"))
outtype = "single";
else
outtype = "double";
endif
out_flag = true;
case "native"
outtype = class (x);
if (out_flag)
error ("mean: only one OUTTYPE can be specified");
elseif (strcmp (outtype, "logical"))
outtype = "double";
elseif (strcmp (outtype, "char"))
error ("mean: OUTTYPE 'native' cannot be used with char inputs");
endif
out_flag = true;
case "double"
if (out_flag)
error ("mean: only one OUTTYPE can be specified");
endif
outtype = "double";
out_flag = true;
otherwise
print_usage ();
endswitch
endfor
varargin(varg_chars) = [];
nvarg = numel (varargin);
endif
if (strcmp (outtype, "default"))
if (isa (x, "single"))
outtype = "single";
else
outtype = "double";
endif
endif
if (nvarg > 1 || (nvarg == 1 && ! isnumeric (varargin{1})))
## After trimming char inputs can only be one varargin left, must be numeric
print_usage ();
endif
if (! (isnumeric (x) || islogical (x) || ischar (x)))
error ("mean: X must be either a numeric, boolean, or character array");
endif
## Process special cases of input/output sizes.
if (nvarg == 0)
## Single numeric input argument, no dimensions given.
if (all_flag)
x = x(:);
if (omitnan)
x = x(! isnan (x));
endif
if (any (isa (x, {"int64", "uint64"})))
m = int64_mean (x, 1, numel (x), outtype);
else
m = sum (x, "double") ./ numel (x);
endif
else
## Find the first non-singleton dimension.
(dim = find (szx != 1, 1)) || (dim = 1);
n = szx(dim);
if (omitnan)
idx = isnan (x);
n = sum (! idx, dim);
x(idx) = 0;
endif
if (any (isa (x, {"int64", "uint64"})))
m = int64_mean (x, dim, n, outtype);
else
m = sum (x, dim, "double") ./ n;
endif
endif
else
## Two numeric input arguments, dimensions given. Note scalar is vector!
vecdim = varargin{1};
if (isempty (vecdim) || ! (isvector (vecdim) && all (vecdim > 0)
&& all (rem (vecdim, 1)==0)))
error ("mean: DIM must be a positive integer scalar or vector");
endif
if (ndx == 2 && isempty (x) && szx == [0,0])
## FIXME: This special case handling could be removed once sum
## compatibly handles all sizes of empty inputs.
sz_out = szx;
sz_out (vecdim(vecdim <= ndx)) = 1;
m = NaN (sz_out);
else
if (isscalar (vecdim))
if (vecdim > ndx)
m = x;
else
n = szx(vecdim);
if (omitnan)
nanx = isnan (x);
n = sum (! nanx, vecdim);
x(nanx) = 0;
endif
if (any (isa (x, {"int64", "uint64"})))
m = int64_mean (x, vecdim, n, outtype);
else
m = sum (x, vecdim, "double") ./ n;
endif
endif
else
vecdim = sort (vecdim);
if (! all (diff (vecdim)))
error ("mean: VECDIM must contain non-repeating positive integers");
endif
## Ignore dimensions in VECDIM larger than actual array.
vecdim(vecdim > ndims (x)) = [];
if (isempty (vecdim))
m = x;
else
## Calculate permutation vector
remdims = 1 : ndx; # All dimensions
remdims(vecdim) = []; # Delete dimensions specified by vecdim
nremd = numel (remdims);
## If all dimensions are given, it is equivalent to 'all' flag
if (nremd == 0)
x = x(:);
if (omitnan)
x = x(! isnan (x));
endif
if (any (isa (x, {"int64", "uint64"})))
m = int64_mean (x, 1, numel (x), outtype);
else
m = sum (x, "double") ./ numel (x);
endif
else
## Permute to push vecdims to back
perm = [remdims, vecdim];
x = permute (x, perm);
## Reshape to squash all vecdims in final dimension
sznew = [szx(remdims), prod(szx(vecdim))];
x = reshape (x, sznew);
## Calculate mean on final dimension
dim = nremd + 1;
if (omitnan)
nanx = isnan (x);
x(nanx) = 0;
n = sum (! nanx, dim);
else
n = sznew(dim);
endif
if (any (isa (x, {"int64", "uint64"})))
m = int64_mean (x, dim, n, outtype);
else
m = sum (x, dim, "double") ./ n;
endif
## Inverse permute back to correct dimensions
m = ipermute (m, perm);
endif
endif
endif
endif
endif
## Convert output if necessary
if (! strcmp (class (m), outtype))
if (! islogical (x))
m = feval (outtype, m);
endif
endif
endfunction
function m = int64_mean (x, dim, n, outtype)
## Avoid int overflow in large ints. Smaller ints processed as double
## avoids overflow but large int64 values have floating pt error as double.
## Use integer math and manual remainder correction to avoid this.
if (any (abs (x(:)) >= flintmax / n))
rmdr = double (rem (x, n)) / n;
rmdr_hilo = logical (int8 (rmdr)); # Integer rounding direction indicator
## Do 'native' int summation to prevent double precision error,
## then add back in lost round-up/down remainders.
m = sum (x/n, dim, "native");
## rmdr.*!rmdr_hilo = remainders that were rounded down in abs val
## signs retained, can be summed and added back.
## rmdr.*rmdr_hilo = remainders that were rounded up in abs val.
## need to add back difference between 1 and rmdr, retaining sign.
rmdr = sum (rmdr .* !rmdr_hilo, dim) - ...
sum ((1 - abs (rmdr)) .* rmdr_hilo .* sign (rmdr), dim);
if (any (abs (m(:)) >= flintmax))
## Avoid float errors when combining for large m.
## FIXME: may also need to include checking rmdr for large numel (x),
## as its value could be on the order of numel (x).
if (any (strcmp (outtype, {"int64", "uint64"})))
m += rmdr;
else
m = double (m) + rmdr;
endif
else
m = double(m) + rmdr;
switch (outtype)
case "int64"
m = int64 (m);
case "uint64"
m = uint64 (m);
endswitch
endif
else
m = double (sum (x, dim, "native")) ./ n;
endif
endfunction
%!test
%! x = -10:10;
%! y = x';
%! z = [y, y+10];
%! assert (mean (x), 0);
%! assert (mean (y), 0);
%! assert (mean (z), [0, 10]);
%!assert (mean (magic (3), 1), [5, 5, 5])
%!assert (mean (magic (3), 2), [5; 5; 5])
%!assert (mean (logical ([1 0 1 1])), 0.75)
%!assert (mean (single ([1 0 1 1])), single (0.75))
%!assert (mean ([1 2], 3), [1 2])
## Test outtype option
%!test
%! in = [1 2 3];
%! out = 2;
%! assert (mean (in, "default"), mean (in));
%! assert (mean (in, "default"), out);
%! assert (mean (in, "double"), out);
%! assert (mean (in, "native"), out);
%!test
%! in = single ([1 2 3]);
%! out = 2;
%! assert (mean (in, "default"), mean (in));
%! assert (mean (in, "default"), single (out));
%! assert (mean (in, "double"), out);
%! assert (mean (in, "native"), single (out));
%!test
%! in = logical ([1 0 1]);
%! out = 2/3;
%! assert (mean (in, "default"), mean (in), eps);
%! assert (mean (in, "default"), out, eps);
%! assert (mean (in, "double"), out, eps);
%! assert (mean (in, "native"), out, eps);
%!test
%! in = char ("ab");
%! out = 97.5;
%! assert (mean (in, "default"), mean (in), eps);
%! assert (mean (in, "default"), out, eps);
%! assert (mean (in, "double"), out, eps);
%!test
%! in = uint8 ([1 2 3]);
%! out = 2;
%! assert (mean (in, "default"), mean (in));
%! assert (mean (in, "default"), out);
%! assert (mean (in, "double"), out);
%! assert (mean (in, "native"), uint8 (out));
%!test
%! in = uint8 ([0 1 2 3]);
%! out = 1.5;
%! out_u8 = 2;
%! assert (mean (in, "default"), mean (in), eps);
%! assert (mean (in, "default"), out, eps);
%! assert (mean (in, "double"), out, eps);
%! assert (mean (in, "native"), uint8 (out_u8));
%! assert (class (mean (in, "native")), "uint8");
%!test # internal sum exceeding intmax
%! in = uint8 ([3 141 141 255]);
%! out = 135;
%! assert (mean (in, "default"), mean (in));
%! assert (mean (in, "default"), out);
%! assert (mean (in, "double"), out);
%! assert (mean (in, "native"), uint8 (out));
%! assert (class (mean (in, "native")), "uint8");
%!test # fractional answer with internal sum exceeding intmax
%! in = uint8 ([1 141 141 255]);
%! out = 134.5;
%! out_u8 = 135;
%! assert (mean (in, "default"), mean (in));
%! assert (mean (in, "default"), out);
%! assert (mean (in, "double"), out);
%! assert (mean (in, "native"), uint8 (out_u8));
%! assert (class (mean (in, "native")), "uint8");
%!test <54567> # large int64 sum exceeding intmax and double precision limit
%! in_same = uint64 ([intmax("uint64") intmax("uint64")-2]);
%! out_same = intmax ("uint64")-1;
%! in_opp = int64 ([intmin("int64"), intmax("int64")-1]);
%! out_opp = -1;
%! in_neg = int64 ([intmin("int64") intmin("int64")+2]);
%! out_neg = intmin ("int64")+1;
%!
%! ## both positive
%! assert (mean (in_same, "default"), mean (in_same));
%! assert (mean (in_same, "default"), double (out_same));
%! assert (mean (in_same, "double"), double (out_same));
%! assert (mean (in_same, "native"), uint64 (out_same));
%! assert (class (mean (in_same, "native")), "uint64");
%!
%! ## opposite signs
%! assert (mean (in_opp, "default"), mean (in_opp));
%! assert (mean (in_opp, "default"), double (out_opp));
%! assert (mean (in_opp, "double"), double (out_opp));
%! assert (mean (in_opp, "native"), int64 (out_opp));
%! assert (class (mean (in_opp, "native")), "int64");
%!
%! ## both negative
%! assert (mean (in_neg, "default"), mean (in_neg));
%! assert (mean (in_neg, "default"), double(out_neg));
%! assert (mean (in_neg, "double"), double(out_neg));
%! assert (mean (in_neg, "native"), int64(out_neg));
%! assert (class (mean (in_neg, "native")), "int64");
## Additional tests int64 and double precision limits
%!test <54567>
%! in = [(intmin('int64')+5), (intmax('int64'))-5];
%! assert (mean (in, "native"), int64(-1));
%! assert (class (mean (in, "native")), "int64");
%! assert (mean (double(in)), double(0) );
%! assert (mean (in), double(-0.5) );
%! assert (mean (in, "default"), double(-0.5) );
%! assert (mean (in, "double"), double(-0.5) );
%! assert (mean (in, "all", "native"), int64(-1));
%! assert (mean (in, 2, "native"), int64(-1));
%! assert (mean (in, [1 2], "native"), int64(-1));
%! assert (mean (in, [2 3], "native"), int64(-1));
%! assert (mean ([intmin("int64"), in, intmax("int64")]), double(-0.5))
%! assert (mean ([in; int64([1 3])], 2, "native"), int64([-1; 2]));
## Test input and optional arguments "all", DIM, "omitnan".
%!test
%! x = [-10:10];
%! y = [x;x+5;x-5];
%! assert (mean (x), 0);
%! assert (mean (y, 2), [0, 5, -5]');
%! assert (mean (y, "all"), 0);
%! y(2,4) = NaN;
%! assert (mean (y', "omitnan"), [0 5.35 -5]);
%! z = y + 20;
%! assert (mean (z, "all"), NaN);
%! assert (mean (z, "all", "includenan"), NaN);
%! assert (mean (z, "all", "omitnan"), 20.03225806451613, 4e-14);
%! m = [20 NaN 15];
%! assert (mean (z'), m);
%! assert (mean (z', "includenan"), m);
%! m = [20 25.35 15];
%! assert (mean (z', "omitnan"), m);
%! assert (mean (z, 2, "omitnan"), m');
%! assert (mean (z, 2, "native", "omitnan"), m');
%! assert (mean (z, 2, "omitnan", "native"), m');
## Test boolean input
%!test
%! assert (mean (true, "all"), 1);
%! assert (mean (false), 0);
%! assert (mean ([true false true]), 2/3, 4e-14);
%! assert (mean ([true false true], 1), [1 0 1]);
%! assert (mean ([true false NaN], 1), [1 0 NaN]);
%! assert (mean ([true false NaN], 2), NaN);
%! assert (mean ([true false NaN], 2, "omitnan"), 0.5);
%! assert (mean ([true false NaN], 2, "omitnan", "native"), 0.5);
## Test char inputs
%!assert (mean ("abc"), double (98))
%!assert (mean ("ab"), double (97.5), eps)
%!assert (mean ("abc", "double"), double (98))
%!assert (mean ("abc", "default"), double (98))
## Test NaN inputs
%!test
%! x = magic (4);
%! x([2, 9:12]) = NaN;
%! assert (mean (x), [NaN 8.5, NaN, 8.5], eps);
%! assert (mean (x,1), [NaN 8.5, NaN, 8.5], eps);
%! assert (mean (x,2), NaN(4,1), eps);
%! assert (mean (x,3), x, eps);
%! assert (mean (x, 'omitnan'), [29/3, 8.5, NaN, 8.5], eps);
%! assert (mean (x, 1, 'omitnan'), [29/3, 8.5, NaN, 8.5], eps);
%! assert (mean (x, 2, 'omitnan'), [31/3; 9.5; 28/3; 19/3], eps);
%! assert (mean (x, 3, 'omitnan'), x, eps);
## Test empty inputs
%!assert (mean ([]), NaN(1,1))
%!assert (mean (single([])), NaN(1,1,"single"))
%!assert (mean ([], 1), NaN(1,0))
%!assert (mean ([], 2), NaN(0,1))
%!assert (mean ([], 3), NaN(0,0))
%!assert (mean (ones(1,0)), NaN(1,1))
%!assert (mean (ones(1,0), 1), NaN(1,0))
%!assert (mean (ones(1,0), 2), NaN(1,1))
%!assert (mean (ones(1,0), 3), NaN(1,0))
%!assert (mean (ones(0,1)), NaN(1,1))
%!assert (mean (ones(0,1), 1), NaN(1,1))
%!assert (mean (ones(0,1), 2), NaN(0,1))
%!assert (mean (ones(0,1), 3), NaN(0,1))
%!assert (mean (ones(0,1,0)), NaN(1,1,0))
%!assert (mean (ones(0,1,0), 1), NaN(1,1,0))
%!assert (mean (ones(0,1,0), 2), NaN(0,1,0))
%!assert (mean (ones(0,1,0), 3), NaN(0,1,1))
%!assert (mean (ones(0,0,1,0)), NaN(1,0,1,0))
%!assert (mean (ones(0,0,1,0), 1), NaN(1,0,1,0))
%!assert (mean (ones(0,0,1,0), 2), NaN(0,1,1,0))
%!assert (mean (ones(0,0,1,0), 3), NaN(0,0,1,0))
## Test dimension indexing with vecdim in N-dimensional arrays
%!test
%! x = repmat ([1:20;6:25], [5 2 6 3]);
%! assert (size (mean (x, [3 2])), [10 1 1 3]);
%! assert (size (mean (x, [1 2])), [1 1 6 3]);
%! assert (size (mean (x, [1 2 4])), [1 1 6]);
%! assert (size (mean (x, [1 4 3])), [1 40]);
%! assert (size (mean (x, [1 2 3 4])), [1 1]);
## Test exceeding dimensions
%!assert (mean (ones (2,2), 3), ones (2,2))
%!assert (mean (ones (2,2,2), 99), ones (2,2,2))
%!assert (mean (magic (3), 3), magic (3))
%!assert (mean (magic (3), [1 3]), [5, 5, 5])
%!assert (mean (magic (3), [1 99]), [5, 5, 5])
## Test results with vecdim in n-dimensional arrays and "omitnan"
%!test
%! x = repmat ([1:20;6:25], [5 2 6 3]);
%! m = repmat ([10.5;15.5], [5 1 1 3]);
%! assert (mean (x, [3 2]), m, 4e-14);
%! x(2,5,6,3) = NaN;
%! m(2,1,1,3) = NaN;
%! assert (mean (x, [3 2]), m, 4e-14);
%! m(2,1,1,3) = 15.52301255230125;
%! assert (mean (x, [3 2], "omitnan"), m, 4e-14);
## Test input case insensitivity
%!assert (mean ([1 2 3], "aLL"), 2)
%!assert (mean ([1 2 3], "OmitNan"), 2)
%!assert (mean ([1 2 3], "DOUBle"), 2)
## Test limits of single precision summation limits on each code path
%!assert <*63848> (mean (ones (80e6, 1, "single")), 1, eps)
%!assert <*63848> (mean (ones (80e6, 1, "single"), "all"), 1, eps)
%!assert <*63848> (mean (ones (80e6, 1, "single"), 1), 1, eps)
%!assert <*63848> (mean (ones (80e6, 1, "single"), [1 2]), 1, eps)
%!assert <*63848> (mean (ones (80e6, 1, "single"), [1 3]), 1, eps)
## Test limits of double precision summation
%!assert <63848> (mean ([flintmax("double"), ones(1, 2^8-1, "double")]), ...
%! 35184372088833-1/(2^8), eps(35184372088833))
## Test input validation
%!error <Invalid call to mean. Correct usage is> mean ()
%!error <Invalid call to mean. Correct usage is> mean (1, 2, 3)
%!error <Invalid call to mean. Correct usage is> mean (1, 2, 3, 4)
%!error <Invalid call to mean. Correct usage is> mean (1, "all", 3)
%!error <Invalid call to mean. Correct usage is> mean (1, "b")
%!error <Invalid call to mean. Correct usage is> mean (1, 1, "foo")
%!error <OUTTYPE 'native' cannot be used with char> mean ("abc", "native")
%!error <X must be either a numeric, boolean, or character> mean ({1:5})
%!error <DIM must be a positive integer> mean (1, ones (2,2))
%!error <DIM must be a positive integer> mean (1, 1.5)
%!error <DIM must be a positive integer> mean (1, 0)
%!error <DIM must be a positive integer> mean (1, [])
%!error <DIM must be a positive integer> mean (1, -1)
%!error <DIM must be a positive integer> mean (1, -1.5)
%!error <DIM must be a positive integer> mean (1, NaN)
%!error <DIM must be a positive integer> mean (1, Inf)
%!error <DIM must be a positive integer> mean (repmat ([1:20;6:25], [5 2]), -1)
%!error <DIM must be a positive integer> mean (repmat ([1:5;5:9], [5 2]), [1 -1])
%!error <DIM must be a positive integer> mean (1, ones(1,0))
%!error <VECDIM must contain non-repeating> mean (1, [2 2])
|