File: normalize.m

package info (click to toggle)
octave 9.4.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 144,300 kB
  • sloc: cpp: 332,784; ansic: 77,239; fortran: 20,963; objc: 9,396; sh: 8,213; yacc: 4,925; lex: 4,389; perl: 1,544; java: 1,366; awk: 1,259; makefile: 648; xml: 189
file content (687 lines) | stat: -rw-r--r-- 26,377 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
########################################################################
##
## Copyright (C) 2017-2024 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################

## -*- texinfo -*-
## @deftypefn  {} {@var{z} =} normalize (@var{x})
## @deftypefnx {} {@var{z} =} normalize (@var{x}, @var{dim})
## @deftypefnx {} {@var{z} =} normalize (@dots{}, @var{method})
## @deftypefnx {} {@var{z} =} normalize (@dots{}, @var{method}, @var{option})
## @deftypefnx {} {@var{z} =} normalize (@dots{}, @var{scale}, @var{scaleoption}, @var{center}, @var{centeroption})
## @deftypefnx {} {[@var{z}, @var{c}, @var{s}] =} normalize (@dots{})
## Return a normalization of the data in @var{x} using one of several available
## scaling and centering methods.
##
## @code{normalize} by default will return the @code{zscore} of @var{x},
## defined as the number of standard deviations each element is from the mean
## of @var{x}.  This is equivalent to centering at the mean of the data and
## scaling by the standard deviation.
##
## The returned value @var{z} will have the same size as @var{x}.  The optional
## return variables @var{c} and @var{s} are the centering and scaling factors
## used in the normalization such that:
##
## @example
## @group
##   @tcode{@var{z} = (@var{x} - @var{c}) ./ @var{s}}
## @end group
## @end example
##
## If @var{x} is a vector, @code{normalize} will operate on the data in
## @var{x}.
##
## If @var{x} is a matrix, @code{normalize} will operate independently on
## each column in @var{x}.
##
## If @var{x} is an N-dimensional array, @code{normalize} will operate
## independently on the first non-singleton dimension in @var{x}.
##
## If the optional second argument @var{dim} is given, operate along this
## dimension.
##
## @code{normalize} ignores NaN values is @var{x} similar to the behavior of
## the omitnan option in @code{std}, @code{mean}, and @code{median}.
##
## The optional inputs @var{method} and @var{option} can be used to specify the
## type of normalization performed on @var{x}.  Note that only the
## @option{scale} and @option{center} options may be specified together using
## any of the methods defined below.  Valid normalization methods are:
##
## @table @code
## @item zscore
## (Default) Normalizes the elements in @var{x} to the scaled distance from a
##  central value.  Valid Options:
##
##    @table @code
##    @item std
##    (Default) Data is centered at @code{mean (@var{x})} and scaled by the
##      standard deviation.
##
##    @item robust
##    Data is centered at @code{median (@var{x})} and scaled by the median
##    absolute deviation.
##    @end table
##
## @item norm
## @var{z} is the general vector norm of @var{x}, with @var{option} being the
## normalization factor @var{p} that determines the vector norm type according
## to:
## @tex
## $$Z = \left (\sum_k \left | X_k \right |^P  \right )^{1/P}$$
## @end tex
## @ifnottex
##
## @example
## @group
##   @tcode{@var{z} = [sum (abs (@var{x}) .^ @var{p})] ^ (1/@var{p})}
## @end group
## @end example
##
## @end ifnottex
## @var{p} can be any positive scalar, specific values being:
##
##    @table @code
##    @item @var{p} = 1
##    @var{x} is normalized by @code{sum (abs (@var{x}))}.
##
##    @item @var{p} = 2
##    (Default) @var{x} is normalized by the Euclidian norm, or vector
##    magnitude, of the elements.
##
##    @item @var{P} = Inf
##    @var{x} is normalized by @code{max (abs (@var{x}))}.
##    @end table
##
## @item scale
## @var{x} is scaled by a factor determined by @var{option}, which can be a
## numeric scalar or one of the following:
##
##    @table @code
##    @item std
##    (Default) @var{x} is scaled by its standard deviation.
##
##    @item mad
##    @var{x} is scaled by its median absolute deviation.
##
##    @item first
##    @var{x} is scaled by its first element.
##
##    @item iqr
##    @var{x} is scaled by its interquartile range.
##    @end table
##
## @item range
## @var{x} is scaled to fit the range specified by @var{option} as a two
## element scalar row vector.  The default range is [0, 1].
##
## @item center
## @var{x} is shifted by an amount determined by @var{option}, which can be a
## numeric scalar or one of the following:
##
##    @table @code
##    @item mean
##    (Default) @var{x} is shifted by @code{mean (@var{x})}.
##
##    @item median
##    @var{x} is shifted by @code{median (@var{x})}.
##    @end table
##
## @item medianiqr
## @var{x} is shifted by @code{median (@var{x})} and scaled by the
## interquartile range.
## @end table
##
## Known @sc{matlab} incompatibilities:
##
## @enumerate
## @item
## The option @option{DataVariables} is not yet implemented for Table class
## @var{x} inputs.
## @end enumerate
##
## @seealso{zscore, iqr, norm, rescale, std, median, mean, mad}
## @end deftypefn

function [z, c, s] = normalize (x, varargin)

  ## FIXME: Until NANFLAG/OMITNAN option is implemented in sum, inefficient
  ##        workaround is used for method "norm" option 1  (See bug #50571)

  ## FIXME: When table class is implemented, remove DataVariables error line in
  ## option checking section and add DataVariables data handling switch
  ## section.

  ## Input validation
  if (nargin < 1 || nargin > 8)
    print_usage ();
  endif

  if (! isnumeric (x))
    error ("normalize: X must be a numeric vector, matrix, or array");
  endif

  if (nargin == 1)
    ## Directly handle simple 1 input case.
    [s, c] = std (x, "omitnan");

  else
    ## Parse input options
    dim = [];
    method = [];
    methodoption = [];
    datavariables_flag = false;
    datavar = [];
    scale_and_center_flag = false;

    vararg_idx = 1;
    ## Only second optional input can be numeric without following a method.
    if (isnumeric (varargin{1}))
      dim = varargin{1};
      ## Check for valid dimensions
      if (! (isscalar (dim) && dim == fix (dim) && dim > 0))
        error ("normalize: DIM must be an integer and a valid dimension");
      endif
      vararg_idx++;
    endif

    ## Parse varargin to determine methods then options.
    n_varargin = nargin - 1;
    while (vararg_idx <= n_varargin)
      ## Arguments after second cannot be numeric without following a method.
      if (isnumeric (varargin{vararg_idx}))
        print_usage ();
      endif

      prop = lower (varargin{vararg_idx});

      if (strcmp (prop, "datavariables"))
        ## FIXME: Remove error on next line and undo block comment when support
        ## for Tables is implemented.
        error ("normalize: DataVariables method not yet implemented");
        #{
        if (vararg_idx == n_varargin)
          error (["normalize: DataVariables requires a table variable", ...
                 " be specified"]);
        elseif (datavariables_flag == true)
          error ("normalize: DataVariables may only be specified once");
        else
          datavariables_flag = true;
          datavar = varargin{vararg_idx+1};
          vararg_idx++;
        endif
        #}

      else
        if (! isempty (method))
          ## Catch if a second method is passed
          if (scale_and_center_flag)
            ## if true, already specified two methods, three never possible
            error ("normalize: more than two methods specified");

          elseif (strcmp ({method, prop}, {"center", "scale"})
                  || strcmp ({method, prop}, {"scale", "center"}))
            ## Only scale and center can be called together
            scale_and_center_flag = true;
            ## scale/center order doesn't matter, avoid overwriting first one
            stored_method = method;
            method = [];
            stored_methodoption = methodoption;
            methodoption = [];
          else
            ## not scale and center, throw appropriate error
            if (any (strcmp (prop, {"zscore", "norm", "range", "scale", ...
                                    "center", "medianiqr"})))
              error ("normalize: methods '%s' and '%s' may not be combined",
                     method, prop);
            else
              error ("normalize: unknown method '%s'", prop);
            endif
          endif
        endif

        ## Determine method and whether there's an appropriate option specified
        switch (prop)
          case "zscore"
            method = "zscore";
            if (vararg_idx < n_varargin)
              nextprop = lower (varargin{vararg_idx+1});
              if (strcmp (nextprop, "std") || strcmp (nextprop, "robust"))
                methodoption = nextprop;
                vararg_idx++;
              endif
            endif
            if (isempty (methodoption))
              methodoption = "std";
            endif

          case "norm"
            method = "norm";
            if (vararg_idx < n_varargin && isnumeric (varargin{vararg_idx+1}))
              nextprop = varargin{vararg_idx+1};
              if (isscalar (nextprop) && (nextprop > 0))
                methodoption = nextprop;
                vararg_idx++;
              else
                error (["normalize: 'norm' option must be a positive ", ...
                        "scalar or Inf"]);
              endif
            endif
            if (isempty (methodoption))
              methodoption = 2;
            endif

          case "range"
            method = "range";
            if (vararg_idx < n_varargin && isnumeric (varargin{vararg_idx+1}))
              nextprop = varargin{vararg_idx+1};
              if (any (size (nextprop) != [1 2]))
                error (["normalize: 'range' must be specified as a ", ...
                        "2-element row vector [a, b]"]);
              endif
              methodoption = nextprop;
              vararg_idx++;
            endif
            if (isempty (methodoption))
              methodoption = [0, 1];
            endif

          case "scale"
            method = "scale";
            if (vararg_idx < n_varargin)
              nextprop = lower (varargin{vararg_idx+1});
              if (isnumeric (nextprop))
                if (! isscalar (nextprop))
                  error ("normalize: scale value must be a scalar");
                else
                  methodoption = nextprop;
                  vararg_idx++;
                endif
              elseif (any (strcmp (nextprop, {"std", "mad", "first", "iqr"})))
                methodoption = nextprop;
                vararg_idx++;
              endif
            endif

            if (isempty (methodoption))
              methodoption = 'std';
            endif

          case "center"
            method = "center";
            if (vararg_idx < n_varargin)
              nextprop = lower (varargin{vararg_idx+1});
              if (isscalar (nextprop)
                  || any (strcmp (nextprop, {"mean", "median"})))
                methodoption = nextprop;
                vararg_idx++;
              elseif (isnumeric (nextprop))
                error ("normalize: center shift must be a scalar value");
              endif
            endif
            if (isempty (methodoption))
              methodoption = 'mean';
            endif

          case "medianiqr"
            method = "medianiqr";

          otherwise
            error ("normalize: unknown method '%s'", prop);

        endswitch
      endif

      vararg_idx++;
    endwhile

    if (scale_and_center_flag)
      method = "scaleandcenter";
    endif

    if (isempty (method))
      method = 'zscore';
      methodoption = 'std';
    endif

    if (isempty (dim))
      ## Operate on first non-singleton dimension.
      (dim = find (size (x) > 1, 1)) || (dim = 1);
    endif

    ## Perform normalization based on specified methods

    ## FIXME: DataTables option not handled below.  Fix after Table Class
    ## has been implemented.

    ## Default center/scale factors:
    c = 0;
    s = 1;

    switch (method)
      case "zscore"
        switch (methodoption)
          case "std"
            [s, c] = std (x, [], dim, "omitnan");
          case "robust"
            ## center/median to zero and MAD = 1
            c = median (x, dim, "omitnan");
            ## FIXME: Use bsxfun, rather than broadcasting, until broadcasting
            ##        supports diagonal and sparse matrices.
            ##        (Bugs #41441, #35787).
            s = median (abs (bsxfun (@minus, x , c)), dim, "omitnan");
            ## s = median (abs (x - c), dim, "omitnan");# Broadcasting.
        endswitch

      case "norm"
        switch (methodoption)
          case 1
            ## FIXME:  when sum supports omitnan option replace entire case
            ## with single line:
            ## s = sum (abs (x), dim, "omitnan");
            xnan = isnan (x);
            x(xnan) = 0;
            s = sum (abs (x), dim);
            x(xnan) = NaN;
          case Inf
            s = max (abs (x), [], dim);
          otherwise
            s = sum (abs (x) .^ methodoption, dim) .^ (1/methodoption);
        endswitch

      case "range"
        ## if any range element = 0, avoid divide by zero by replacing that
        ## range element with 1.  output will be zero+min due to x-min(x)=0.
        x_range = range (x, dim);
        x_range(x_range == 0) = 1;
        z_range = methodoption(2) - methodoption(1);
        s = x_range ./ z_range;
        c = min (x, [], dim) - (methodoption(1) .* s);

      case "scale"
        s = process_scale_option (x, dim, methodoption);

      case "center"
        c = process_center_option (x, dim, methodoption);

      case "scaleandcenter"
        ## repeats scale and center using appropriate order and info

        switch (stored_method)
          case "scale"
            ## stored info is scale, latest info is center
            center_option = methodoption;
            scale_option = stored_methodoption;

          case "center"
            ## stored info is center, latest info is scale
            center_option = stored_methodoption;
            scale_option = methodoption;
        endswitch

        s = process_scale_option (x, dim, scale_option);
        c = process_center_option (x, dim, center_option);

      case "medianiqr"
        c = median (x, dim, "omitnan");
        s = iqr (x, dim);

    endswitch

  endif

  ## Divide by scale factor.  If scale = 0, divide by zero = Inf, which is OK.

  ## FIXME: Use bsxfun, rather than broadcasting, until broadcasting
  ##        supports diagonal and sparse matrices (Bugs #41441, #35787).
  z = bsxfun (@rdivide, bsxfun (@minus, x , c), s);
  ## z = (x - c) ./ s;  # Automatic broadcasting

endfunction

function c = process_center_option (x, dim, center_option)

  if (isnumeric (center_option))
    c = center_option;
  else
    switch (center_option)
      case "mean"
        c = mean (x, dim, "omitnan");
      case "median"
        c = median (x, dim, "omitnan");
    endswitch
  endif

endfunction

function s = process_scale_option (x, dim, scale_option)

  warning ("off", "Octave:divide-by-zero", "local");

  if (isnumeric (scale_option))
    s = scale_option;
  else
    switch (scale_option)
      case "std"
        s = std (x, [], dim, "omitnan");
      case "mad"
        s = mad (x, 1, dim);
      case "first"
        dim_vector = repmat ({':'}, ndims(x), 1);
        dim_vector{dim} = 1;
        s = x(dim_vector{:});
      case "iqr"
        s = iqr (x, dim);
    endswitch
  endif

endfunction


## no method specified, using zscore & std
%!assert (normalize ([1,2,3]), [-1,0,1])
%!assert (normalize ([1,2,3], 2), [-1,0,1])
%!assert (normalize (single ([1,2,3])), single ([-1,0,1]))
%!assert (normalize ([2,0,-2;0,2,0;-2,-2,2]), [1,0,-1;0,1,0;-1,-1,1])
%!assert (normalize (magic (3)), [[3;-2;-1]/sqrt(7),[-1;0;1],[1;2;-3]/sqrt(7)])
%!assert (normalize (magic (3), 2), [[3 -4 1]/sqrt(13);[-1 0 1];[-1 4 -3]/sqrt(13)])

## Method: zscore, [std, robust]
%!assert (normalize ([1,2,3],"zscore","std"), [-1,0,1])
%!assert (normalize ([2,0,-2;0,2,0;-2,-2,2],"zscore","std"), [1,0,-1;0,1,0;-1,-1,1])
%!assert (normalize (magic (3),"zscore","std"), [[3;-2;-1]/sqrt(7),[-1;0;1],[1;2;-3]/sqrt(7)])
%!assert (normalize ([1,2,3],"zscore","robust"), [-1,0,1])
%!assert (normalize ([2,0,-2;0,2,0;-2,-2,2],"zscore","robust"), [1,0,-1;0,1,0;-1,-1,1])
%!assert (normalize (magic (3),"zscore","robust"), [4 -1 0; -1 0 1; 0 1 -4])

## Method: norm [1, 2, inf]
%!assert (normalize ([1,2,3],"norm",1), [1/6 1/3 1/2])
%!assert (normalize ([2,0,-2;0,2,0;-2,-2,2],"norm",1), [1,0,-1;0,1,0;-1,-1,1]/2)
%!assert (normalize (magic (3),"norm",1), magic(3)/15)
%!assert (normalize ([1,2,3],"norm",2), [1 2 3]./3.741657386773941, eps)
%!assert (normalize ([2,0,-2;0,2,0;-2,-2,2],"norm",2), [1,0,-1;0,1,0;-1,-1,1]*(sqrt(2)/2), eps)
%!assert (normalize ([1,2,3],"norm",Inf), [1/3 2/3 1])
%!assert (normalize ([2,0,-2;0,2,0;-2,-2,2],"norm",Inf), [1,0,-1;0,1,0;-1,-1,1])
%!assert (normalize (magic (3),"norm",Inf), [[8;3;4]/8,[1;5;9]/9,[6;7;2]/7])

## Method: range
%!assert (normalize ([1,2,3],"range"), [0 0.5 1])
%!assert (normalize ([2,0,-2;0,2,0;-2,-2,2],"range",[0 1]), [1,0.5,0;0.5,1,0.5;0,0,1])
%!assert (normalize (magic (3),"range",[-1 1]), [1 -1 0.6; -1 0 1; -0.6 1 -1], eps)

## Method: scale [mad first iqr number]
%!assert (normalize ([1,2,3],"scale"), [1 2 3])
%!assert (normalize ([2,0,-2;0,2,0;-2,-2,2],"scale","std"), [1 0 -1; 0 1 0; -1 -1 1])
%!assert (normalize (magic (3),"scale",2), (magic(3)/2))

%!assert (normalize ([1,2,3],"scale", "mad"), [1 2 3])
%!assert (normalize ([2,0,-2;0,2,0;-2,-2,2],"scale","mad"), [1 0 -1; 0 1 0; -1 -1 1])
%!assert (normalize (magic (3),"scale","mad"), [8 0.25 6; 3 1.25 7; 4 2.25 2])

%!assert (normalize ([1,2,3],"scale", "first"), [1 2 3])
%!assert (normalize ([2,0,-2;0,2,0;-2,-2,2],"scale","first"), [1 NaN 1; 0 Inf 0; -1 -Inf -1])
%!assert (normalize (magic (3),"scale","first"), [1 1 1; 3/8 5 7/6; 0.5 9 1/3])
%!assert (normalize (magic (3),2,"scale","first"), [1 1/8 3/4;1 5/3 7/3;1 9/4 0.5])
%!test
%! x = reshape (magic (4),2,2,2,2);
%! y3 = cat (4, cat (3,ones(2),[1/8 7/9;11/5 7/2]), cat (3,ones(2),[13/3 2; 4/5 1/15]));
%! y4 = cat (4, ones (2,2,2), cat (3,[3/16 2/3; 2 15/4],[6.5 12/7; 8/11 1/14] ));
%! assert (normalize (x, 3, "scale", "first"), y3);
%! assert (normalize (x, 4, "scale", "first"), y4);

%!assert (normalize ([1,2,3], "scale", "iqr"), [1 2 3]*2/3)
%!assert (normalize ([1,2,3]', "scale", "iqr"), ([1 2 3]')*2/3)
%!assert (normalize ([2,0,-2;0,2,0;-2,-2,2],"scale","iqr"), [1 0 -1; 0 1 0; -1 -1 1]* 2/3, eps)
%!assert (normalize (magic (3),"scale","iqr"), [[8;3;4]/3.75,[1;5;9]/6,[6;7;2]/3.75],eps)

## Method: center [mean median number]
%!assert (normalize ([1,2,3], "center"), [-1 0 1])
%!assert (normalize ([1,2,3], 1, "center"), [0 0 0])
%!assert (normalize ([1,2,3], "center", 10), [-9 -8 -7])
%!assert (normalize ([1 2 3 10], "center", "mean"), [-3 -2 -1 6])
%!assert (normalize ([1 2 3 10], "center", "median"), [-1.5 -0.5 0.5 7.5])

## Method: medianiqr
%!assert (normalize ([1,2,3], "medianiqr"), [-1 0 1]*2/3)
%!assert (normalize ([1,2,3]', "medianiqr"), ([-1 0 1]')*2/3)
%!assert (normalize ([2,0,-2;0,2,0;-2,-2,2], "medianiqr"), [1 0 -1; 0 1 0; -1 -1 1]*2/3)
%!assert (normalize (magic (3), "medianiqr"), [8/5 -1 0; -2/5 0 2/5; 0 1 -8/5]*2/3)

## Test NaN and Inf
%!assert (normalize ([1 2 Inf], 2), [NaN, NaN, NaN])
%!assert (normalize ([1 2 3], 1), [NaN, NaN, NaN])
%!assert (normalize ([1 2 3], 3), [NaN, NaN, NaN])
%!assert (normalize (ones (3,2,2,2)), NaN (3,2,2,2))
%!assert (normalize (Inf), NaN)
%!assert (normalize (NaN), NaN)
%!assert (normalize ([Inf, NaN]), [NaN, NaN])
%!assert (normalize ([Inf, NaN]'), [NaN, NaN]')
%!assert (normalize ([Inf, Inf], 1), [NaN, NaN])
%!assert (normalize ([Inf, Inf], 2), [NaN, NaN])
%!assert (normalize ([Inf, Inf]', 1), [NaN, NaN]')
%!assert (normalize ([Inf, Inf]', 2), [NaN, NaN]')
%!assert (normalize ([1 2 NaN; NaN 3 4], 1), [NaN -1 NaN; NaN 1 NaN]*sqrt(2)/2, eps)

## Two input methods, must be scale and center
%!assert (normalize (magic(3), "scale", "center"), normalize (magic(3), "zscore"), eps)
%!assert (normalize (magic(3), "center", "scale"), normalize (magic(3), "zscore"), eps)

## Test additional outputs
%!test
%! [z, c, s] = normalize ([1, 2, 3], 2);
%! assert ({z, c, s}, {[-1 0 1], [2], [1]});
%! [z, c, s] = normalize (magic (3), "zscore", "std");
%! assert ({z, c, s}, {[[3;-2;-1]/sqrt(7),[-1;0;1],[1;2;-3]/sqrt(7)], [5 5 5], [sqrt(7) 4 sqrt(7)]});
%! [z, c, s] = normalize (magic (3), "zscore", "robust");
%! assert ({z, c, s}, {[4 -1 0; -1 0 1; 0 1 -4], [4 5 6], [1 4 1]});
%! [z, c, s] = normalize (magic (3), "norm", 1);
%! assert ({z, c, s}, {magic(3)/15 , 0, [15 15 15]});
%! [z, c, s] = normalize ([2,0,-2;0,2,0;-2,-2,2],"norm",2);
%! assert ({z, c, s}, {[1,0,-1;0,1,0;-1,-1,1]*(sqrt(2)/2), 0, [1 1 1]*2*sqrt(2)}, eps);
%! [z, c, s] = normalize ([1 2 3], "norm", Inf);
%! assert ({z, c, s}, {[1 2 3]/3, 0, 3}, eps);
%! [z, c, s] = normalize (magic (3),"range",[-1 1]);
%! assert ({z, c, s}, {[1 -1 0.6; -1 0 1; -0.6 1 -1], [5.5 5 4.5], [2.5 4 2.5]}, eps);
%! [z, c, s] = normalize (magic (3),"scale","mad");
%! assert ({z, c, s}, {[8 0.25 6; 3 1.25 7; 4 2.25 2], 0, [1 4 1]});
%! [z, c, s] = normalize (magic (3),"scale","first");
%! assert ({z, c, s}, {[1 1 1; 3/8 5 7/6; 0.5 9 1/3],0, [8 1 6]}, eps);
%! [z, c, s] = normalize ([1,2,3]', "scale", "iqr");
%! assert ({z, c, s}, {([1 2 3]')*2/3, 0, 1.5});
%! [z, c, s] = normalize ([1,2,3], "center", 10);
%! assert ({z, c, s}, {[-9 -8 -7], 10, 1});
%! [z, c, s] = normalize ([1 2 3 10], "center", "mean");
%! assert ({z, c, s}, {[-3 -2 -1 6], 4, 1});
%! [z, c, s] = normalize ([1 2 3 10], "center", "median");
%! assert ({z, c, s}, {[-1.5 -0.5 0.5 7.5], 2.5, 1});
%! [z, c, s] = normalize (magic (3), "medianiqr");
%! assert ({z, c, s}, {[8/5 -1 0; -2/5 0 2/5; 0 1 -8/5]*2/3, [4 5 6], [3.75 6 3.75]}, eps);
%! [z, c, s] = normalize ([1 2 Inf], 2);
%! assert ({z, c, s}, {[NaN, NaN, NaN], Inf, NaN});
%! [z, c, s] = normalize (Inf);
%! assert ({z, c, s}, {NaN, Inf, NaN});

## Test sparse and diagonal inputs
%!test
%! [z, c, s] = normalize (eye (2));
%! assert (z, (sqrt(2)/2)*[1, -1; -1, 1], eps);
%! assert (c, [0.5, 0.5], eps);
%! assert (s, (sqrt(2)/2)*[1, 1], eps);
%!test
%! [z, c, s] = normalize (sparse (eye (2)));
%! assert (full (z), (sqrt(2)/2)*[1, -1; -1, 1], eps);
%! assert (full (c), [0.5, 0.5], eps);
%! assert (full (s), (sqrt(2)/2)*[1, 1], eps);
%!test
%! [z, c, s] = normalize (sparse (magic (3)), "zscore", "robust");
%! assert (full (z), [4 -1 0; -1 0 1; 0 1 -4], eps);
%! assert (full (c), [4, 5, 6], eps);
%! assert (full (s), [1, 4, 1], eps);
%!test <55765>
%! [z, c, s] = normalize (sparse (eye(2)));
%! assert (issparse (z));
%! assert (issparse (c));
%! assert (issparse (s));
%!test <55765>
%! [z, c, s] = normalize (sparse (magic (3)), "zscore", "robust");
%! assert (issparse (z));
%! assert (issparse (c));
%! assert (issparse (s));

## Test that normalize ignores NaN values
%!assert <*50571> (normalize ([1 2 NaN], 2), [-1, 1, NaN]*sqrt(2)/2, eps)
%!assert <*50571> (normalize ([1 2 NaN; 1 2 3], 2), [[-1 1 NaN]*sqrt(2)/2; -1 0 1], eps)
%!assert <*50571> (normalize ([1 2 NaN; 1 2 NaN], 1), NaN (2, 3))
%!assert <*50571> (normalize ([1 2 NaN; 2 3 4], 2), [sqrt(2)/2*[-1 1 NaN]; -1 0 1], eps)
%!assert <*50571> (normalize ([1 2 NaN; 2 3 4], 2, "zscore", "robust"), [-1 1 NaN; -1 0 1])
%!assert <*50571> (normalize ([1 2 NaN; 2 3 4], 2, "norm", 1), [1/3 2/3 NaN; 2/9 1/3 4/9], eps)
%!assert <*50571> (normalize ([1 2 NaN; 2 3 4], 2, "norm", Inf), [0.5 1 NaN; 0.5 0.75 1], eps)
%!assert <*50571> (normalize ([1 2 NaN; 2 3 4], 2, "range", [1 2]), [1 2 NaN; 1 1.5 2], eps)
%!assert <*50571> (normalize ([1 2 NaN; 2 3 4], 2, "scale", 2), [0.5 1 NaN; 1 1.5 2], eps)
%!assert <*50571> (normalize ([1 2 NaN; 2 3 4], 2, "scale", "mad"), [2 4 NaN; 2 3 4], eps)
%!assert <*50571> (normalize ([1 2 NaN; 2 3 4], 2, "scale", "first"), [1 2 NaN; 1 1.5 2], eps)
%!assert <*50571> (normalize ([1 2 NaN; 2 3 4], 2, "scale", "iqr"), [1 2 NaN; 4/3 2 8/3], eps)
%!assert <*50571> (normalize ([1 2 NaN; 2 3 4], 2, "center", "mean"), [-0.5 0.5 NaN; -1 0 1], eps)
%!assert <*50571> (normalize ([1 2 NaN; 2 3 4], 2, "center", "median"), [-0.5 0.5 NaN; -1 0 1], eps)
%!assert <*50571> (normalize ([1 2 NaN; 2 3 4], 2, "center", -1), [2 3 NaN; 3 4 5], eps)
%!assert <*50571> (normalize ([1 2 NaN; 2 3 NaN], 2, "center", "mean", "scale", "std"), sqrt(2)/2*[-1 1 NaN; -1 1 NaN], eps)

## Test input validation
%!error <Invalid call> normalize ()
%!error <Invalid call> normalize (1, 2, 3)
%!error <X must be a numeric> normalize (['A'; 'B'])
%!error <DIM must be an integer> normalize (1, ones (2,2))
%!error <DIM must be an integer> normalize (1, 1.5)
%!error <DIM must be .* a valid dimension> normalize (1, 0)
%!error <more than two methods specified> normalize ([1 2 3], "scale", "center", "norm")
%!error <methods .* may not be combined> normalize ([1 2 3], "norm", "zscore")
%!error <unknown method 'foo'> normalize ([1 2 3], "norm", "foo")
%
%!error <'norm' option must be a positive scalar or Inf> normalize ([1 2 3], "norm", [1 2])
%!error <'norm' option must be a positive scalar or Inf> normalize ([1 2 3], "norm", -1)
%!error <'range' must be specified as> normalize ([1 2 3], "range", [1 2]')
%!error <'range' must be specified as> normalize ([1 2 3], "range", [1 2 3])
%!error <'range' must be specified as> normalize ([1 2 3], "range", 1)
%!error <scale value must be a scalar> normalize ([1 2 3], "scale", [1 2 3])
%!error <center shift must be a scalar value> normalize ([1 2 3], "center", [1 2])
%!error <unknown method 'foo'> normalize ([1 2 3], "foo")