1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
|
########################################################################
##
## Copyright (C) 2008-2024 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING. If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################
## -*- texinfo -*-
## @deftypefn {} {@var{q} =} quantile (@var{x})
## @deftypefnx {} {@var{q} =} quantile (@var{x}, @var{p})
## @deftypefnx {} {@var{q} =} quantile (@var{x}, @var{p}, @var{dim})
## @deftypefnx {} {@var{q} =} quantile (@var{x}, @var{p}, @var{dim}, @var{method})
## For a sample, @var{x}, calculate the quantiles, @var{q}, corresponding to
## the cumulative probability values in @var{p}. All non-numeric values (NaNs)
## of @var{x} are ignored.
##
## If @var{x} is a matrix, compute the quantiles for each column and
## return them in a matrix, such that the i-th row of @var{q} contains
## the @var{p}(i)th quantiles of each column of @var{x}.
##
## If @var{p} is unspecified, return the quantiles for
## @code{[0.00 0.25 0.50 0.75 1.00]}.
## The optional argument @var{dim} determines the dimension along which
## the quantiles are calculated. If @var{dim} is omitted it defaults to
## the first non-singleton dimension.
##
## The methods available to calculate sample quantiles are the nine methods
## used by R (@url{https://www.r-project.org/}). The default value is
## @w{@var{method} = 5}.
##
## Discontinuous sample quantile methods 1, 2, and 3
##
## @enumerate 1
## @item Method 1: Inverse of empirical distribution function.
##
## @item Method 2: Similar to method 1 but with averaging at discontinuities.
##
## @item Method 3: SAS definition: nearest even order statistic.
## @end enumerate
##
## Continuous sample quantile methods 4 through 9, where
## @tex
## $p(k)$
## @end tex
## @ifnottex
## @var{p}(k)
## @end ifnottex
## is the linear
## interpolation function respecting each method's representative cdf.
##
## @enumerate 4
## @item Method 4:
## @tex
## $p(k) = k / N$.
## @end tex
## @ifnottex
## @var{p}(k) = k / N.
## @end ifnottex
## That is, linear interpolation of the empirical cdf, where @math{N} is the
## length of @var{P}.
##
## @item Method 5:
## @tex
## $p(k) = (k - 0.5) / N$.
## @end tex
## @ifnottex
## @var{p}(k) = (k - 0.5) / N.
## @end ifnottex
## That is, a piecewise linear function where the knots are the values midway
## through the steps of the empirical cdf.
##
## @item Method 6:
## @tex
## $p(k) = k / (N + 1)$.
## @end tex
## @ifnottex
## @var{p}(k) = k / (N + 1).
## @end ifnottex
##
## @item Method 7:
## @tex
## $p(k) = (k - 1) / (N - 1)$.
## @end tex
## @ifnottex
## @var{p}(k) = (k - 1) / (N - 1).
## @end ifnottex
##
## @item Method 8:
## @tex
## $p(k) = (k - 1/3) / (N + 1/3)$.
## @end tex
## @ifnottex
## @var{p}(k) = (k - 1/3) / (N + 1/3).
## @end ifnottex
## The resulting quantile estimates are approximately median-unbiased
## regardless of the distribution of @var{x}.
##
## @item Method 9:
## @tex
## $p(k) = (k - 3/8) / (N + 1/4)$.
## @end tex
## @ifnottex
## @var{p}(k) = (k - 3/8) / (N + 1/4).
## @end ifnottex
## The resulting quantile estimates are approximately unbiased for the
## expected order statistics if @var{x} is normally distributed.
## @end enumerate
##
## @nospell{Hyndman and Fan} (1996) recommend method 8. Maxima, S, and R
## (versions prior to 2.0.0) use 7 as their default. Minitab and SPSS
## use method 6. @sc{matlab} uses method 5.
##
## References:
##
## @itemize @bullet
## @item @nospell{Becker, R. A., Chambers, J. M. and Wilks, A. R.} (1988)
## The New S Language. @nospell{Wadsworth & Brooks/Cole}.
##
## @item @nospell{Hyndman, R. J. and Fan, Y.} (1996) Sample quantiles in
## statistical packages, American Statistician, 50, 361--365.
##
## @item R: A Language and Environment for Statistical Computing;
## @url{https://cran.r-project.org/doc/manuals/fullrefman.pdf}.
## @end itemize
##
## Examples:
## @c Set example in small font to prevent overfull line
##
## @smallexample
## @group
## x = randi (1000, [10, 1]); # Create empirical data in range 1-1000
## q = quantile (x, [0, 1]); # Return minimum, maximum of distribution
## q = quantile (x, [0.25 0.5 0.75]); # Return quartiles of distribution
## @end group
## @end smallexample
## @seealso{prctile}
## @end deftypefn
function q = quantile (x, p = [], dim, method = 5)
if (nargin < 1)
print_usage ();
endif
if (! (isnumeric (x) || islogical (x)) || isempty (x))
error ("quantile: X must be a non-empty numeric vector or matrix");
endif
if (isempty (p))
p = [0.00 0.25, 0.50, 0.75, 1.00];
endif
if (! (isnumeric (p) && isvector (p)))
error ("quantile: P must be a numeric vector");
endif
if (nargin < 3)
## Find the first non-singleton dimension.
(dim = find (size (x) > 1, 1)) || (dim = 1);
else
if (! (isscalar (dim) && dim == fix (dim) && dim > 0))
error ("quantile: DIM must be a positive integer");
endif
endif
## Set the permutation vector.
perm = 1:(max (ndims (x), dim));
perm(1) = dim;
perm(dim) = 1;
## Permute dim to the 1st index.
x = permute (x, perm);
## Save the size of the permuted x N-D array.
sx = size (x);
## Reshape to a 2-D array.
x = reshape (x, sx(1), []);
## Calculate the quantiles.
q = __quantile__ (x, p, method);
## Return the shape to the original N-D array.
q = reshape (q, [numel(p), sx(2:end)]);
## Permute the 1st index back to dim.
q = ipermute (q, perm);
## For Matlab compatibility, return vectors with the same orientation as p
if (isvector (q) && ! isscalar (q) && ! isscalar (p))
if (isrow (p))
q = reshape (q, 1, []);
else
q = reshape (q, [], 1);
endif
endif
endfunction
%!test
%! p = 0.50;
%! q = quantile (1:4, p);
%! qa = 2.5;
%! assert (q, qa);
%! q = quantile (1:4, p, 1);
%! qa = [1, 2, 3, 4];
%! assert (q, qa);
%! q = quantile (1:4, p, 2);
%! qa = 2.5;
%! assert (q, qa);
%!test
%! p = [0.50 0.75];
%! q = quantile (1:4, p);
%! qa = [2.5 3.5];
%! assert (q, qa);
%! q = quantile (1:4, p, 1);
%! qa = [1, 2, 3, 4; 1, 2, 3, 4];
%! assert (q, qa);
%! q = quantile (1:4, p, 2);
%! qa = [2.5 3.5];
%! assert (q, qa);
%!test
%! p = 0.5;
%! x = sort (rand (11));
%! q = quantile (x, p);
%! assert (q, x(6,:));
%! x = x.';
%! q = quantile (x, p, 2);
%! assert (q, x(:,6));
%!test
%! p = [0.00, 0.25, 0.50, 0.75, 1.00];
%! x = [1; 2; 3; 4];
%! a = [1.0000 1.0000 2.0000 3.0000 4.0000
%! 1.0000 1.5000 2.5000 3.5000 4.0000
%! 1.0000 1.0000 2.0000 3.0000 4.0000
%! 1.0000 1.0000 2.0000 3.0000 4.0000
%! 1.0000 1.5000 2.5000 3.5000 4.0000
%! 1.0000 1.2500 2.5000 3.7500 4.0000
%! 1.0000 1.7500 2.5000 3.2500 4.0000
%! 1.0000 1.4167 2.5000 3.5833 4.0000
%! 1.0000 1.4375 2.5000 3.5625 4.0000];
%! for m = 1:9
%! q = quantile (x, p, 1, m);
%! assert (q, a(m,:), 0.0001);
%! endfor
%!test
%! p = [0.00, 0.25, 0.50, 0.75, 1.00];
%! x = [1; 2; 3; 4; 5];
%! a = [1.0000 2.0000 3.0000 4.0000 5.0000
%! 1.0000 2.0000 3.0000 4.0000 5.0000
%! 1.0000 1.0000 2.0000 4.0000 5.0000
%! 1.0000 1.2500 2.5000 3.7500 5.0000
%! 1.0000 1.7500 3.0000 4.2500 5.0000
%! 1.0000 1.5000 3.0000 4.5000 5.0000
%! 1.0000 2.0000 3.0000 4.0000 5.0000
%! 1.0000 1.6667 3.0000 4.3333 5.0000
%! 1.0000 1.6875 3.0000 4.3125 5.0000];
%! for m = 1:9
%! q = quantile (x, p, 1, m);
%! assert (q, a(m,:), 0.0001);
%! endfor
%!test
%! p = [0.00, 0.25, 0.50, 0.75, 1.00];
%! x = [1; 2; 5; 9];
%! a = [1.0000 1.0000 2.0000 5.0000 9.0000
%! 1.0000 1.5000 3.5000 7.0000 9.0000
%! 1.0000 1.0000 2.0000 5.0000 9.0000
%! 1.0000 1.0000 2.0000 5.0000 9.0000
%! 1.0000 1.5000 3.5000 7.0000 9.0000
%! 1.0000 1.2500 3.5000 8.0000 9.0000
%! 1.0000 1.7500 3.5000 6.0000 9.0000
%! 1.0000 1.4167 3.5000 7.3333 9.0000
%! 1.0000 1.4375 3.5000 7.2500 9.0000];
%! for m = 1:9
%! q = quantile (x, p, 1, m);
%! assert (q, a(m,:), 0.0001);
%! endfor
%!test
%! p = [0.00, 0.25, 0.50, 0.75, 1.00];
%! x = [1; 2; 5; 9; 11];
%! a = [1.0000 2.0000 5.0000 9.0000 11.0000
%! 1.0000 2.0000 5.0000 9.0000 11.0000
%! 1.0000 1.0000 2.0000 9.0000 11.0000
%! 1.0000 1.2500 3.5000 8.0000 11.0000
%! 1.0000 1.7500 5.0000 9.5000 11.0000
%! 1.0000 1.5000 5.0000 10.0000 11.0000
%! 1.0000 2.0000 5.0000 9.0000 11.0000
%! 1.0000 1.6667 5.0000 9.6667 11.0000
%! 1.0000 1.6875 5.0000 9.6250 11.0000];
%! for m = 1:9
%! q = quantile (x, p, 1, m);
%! assert (q, a(m,:), 0.0001);
%! endfor
%!test
%! p = [0.00, 0.25, 0.50, 0.75, 1.00];
%! x = [16; 11; 15; 12; 15; 8; 11; 12; 6; 10];
%! a = [6.0000 10.0000 11.0000 15.0000 16.0000
%! 6.0000 10.0000 11.5000 15.0000 16.0000
%! 6.0000 8.0000 11.0000 15.0000 16.0000
%! 6.0000 9.0000 11.0000 13.5000 16.0000
%! 6.0000 10.0000 11.5000 15.0000 16.0000
%! 6.0000 9.5000 11.5000 15.0000 16.0000
%! 6.0000 10.2500 11.5000 14.2500 16.0000
%! 6.0000 9.8333 11.5000 15.0000 16.0000
%! 6.0000 9.8750 11.5000 15.0000 16.0000];
%! for m = 1:9
%! q = quantile (x, p, 1, m);
%! assert (q, a(m,:), 0.0001);
%! endfor
%!test
%! p = [0.00, 0.25, 0.50, 0.75, 1.00];
%! x = [-0.58851; 0.40048; 0.49527; -2.551500; -0.52057; ...
%! -0.17841; 0.057322; -0.62523; 0.042906; 0.12337];
%! a = [-2.551474 -0.588505 -0.178409 0.123366 0.495271
%! -2.551474 -0.588505 -0.067751 0.123366 0.495271
%! -2.551474 -0.625231 -0.178409 0.123366 0.495271
%! -2.551474 -0.606868 -0.178409 0.090344 0.495271
%! -2.551474 -0.588505 -0.067751 0.123366 0.495271
%! -2.551474 -0.597687 -0.067751 0.192645 0.495271
%! -2.551474 -0.571522 -0.067751 0.106855 0.495271
%! -2.551474 -0.591566 -0.067751 0.146459 0.495271
%! -2.551474 -0.590801 -0.067751 0.140686 0.495271];
%! for m = 1:9
%! q = quantile (x, p, 1, m);
%! assert (q, a(m,:), 0.0001);
%! endfor
%!test
%! p = 0.5;
%! x = [0.112600, 0.114800, 0.052100, 0.236400, 0.139300
%! 0.171800, 0.727300, 0.204100, 0.453100, 0.158500
%! 0.279500, 0.797800, 0.329600, 0.556700, 0.730700
%! 0.428800, 0.875300, 0.647700, 0.628700, 0.816500
%! 0.933100, 0.931200, 0.963500, 0.779600, 0.846100];
%! tol = 0.00001;
%! x(5,5) = NaN;
%! assert (quantile (x, p, 1),
%! [0.27950, 0.79780, 0.32960, 0.55670, 0.44460], tol);
%! x(1,1) = NaN;
%! assert (quantile (x, p, 1),
%! [0.35415, 0.79780, 0.32960, 0.55670, 0.44460], tol);
%! x(3,3) = NaN;
%! assert (quantile (x, p, 1),
%! [0.35415, 0.79780, 0.42590, 0.55670, 0.44460], tol);
%!test
%! sx = [2, 3, 4];
%! x = rand (sx);
%! dim = 2;
%! p = 0.5;
%! yobs = quantile (x, p, dim);
%! yexp = median (x, dim);
%! assert (yobs, yexp);
%!assert <*45455> (quantile ([1 3 2], 0.5, 1), [1 3 2])
%!assert <*54421> (quantile ([1:10], 0.5, 1), 1:10)
%!assert <*54421> (quantile ([1:10]', 0.5, 2), [1:10]')
%!assert <*54421> (quantile ([1:10], [0.25, 0.75]), [3, 8])
%!assert <*54421> (quantile ([1:10], [0.25, 0.75]'), [3; 8])
%!assert (quantile ([1:10], 1, 3), [1:10])
## Test input validation
%!error <Invalid call> quantile ()
%!error quantile (['A'; 'B'], 10)
%!error quantile (1:10, [true, false])
%!error quantile (1:10, ones (2,2))
%!error quantile (1, 1, 1.5)
%!error quantile (1, 1, 0)
%!error quantile ((1:5)', 0.5, 1, 0)
%!error quantile ((1:5)', 0.5, 1, 10)
## For the cumulative probability values in @var{p}, compute the
## quantiles, @var{q} (the inverse of the cdf), for the sample, @var{x}.
##
## The optional input, @var{method}, refers to nine methods available in R
## (https://www.r-project.org/). The default is @var{method} = 7.
## @seealso{prctile, quantile, statistics}
## Description: Quantile function of empirical samples
function inv = __quantile__ (x, p, method = 5)
if (nargin < 2)
print_usage ("quantile");
endif
if (isinteger (x) || islogical (x))
x = double (x);
endif
## set shape of quantiles to column vector.
p = p(:);
## Save length and set shape of samples.
x = sort (x, 1);
m = sum (! isnan (x));
[xr, xc] = size (x);
## Initialize output values.
inv = Inf (class (x)) * (-(p < 0) + (p > 1));
inv = repmat (inv, 1, xc);
## Do the work.
if (any (k = find ((p >= 0) & (p <= 1))))
n = length (k);
p = p(k);
## Special case of 1 row.
if (xr == 1)
inv(k,:) = repmat (x, n, 1);
return;
endif
## The column-distribution indices.
pcd = kron (ones (n, 1), xr*(0:xc-1));
mm = kron (ones (n, 1), m);
switch (method)
case {1, 2, 3}
switch (method)
case 1
p = max (ceil (kron (p, m)), 1);
inv(k,:) = x(p + pcd);
case 2
p = kron (p, m);
p_lr = max (ceil (p), 1);
p_rl = min (floor (p + 1), mm);
inv(k,:) = (x(p_lr + pcd) + x(p_rl + pcd))/2;
case 3
## Used by SAS, method PCTLDEF=2.
## http://support.sas.com/onlinedoc/913/getDoc/en/statug.hlp/stdize_sect14.htm
t = max (kron (p, m), 1);
t = roundb (t);
inv(k,:) = x(t + pcd);
endswitch
otherwise
switch (method)
case 4
p = kron (p, m);
case 5
## Used by Matlab.
p = kron (p, m) + 0.5;
case 6
## Used by Minitab and SPSS.
p = kron (p, m+1);
case 7
## Used by S and R.
p = kron (p, m-1) + 1;
case 8
## Median unbiased.
p = kron (p, m+1/3) + 1/3;
case 9
## Approximately unbiased respecting order statistics.
p = kron (p, m+0.25) + 0.375;
otherwise
error ("quantile: Unknown METHOD, '%d'", method);
endswitch
## Duplicate single values.
imm1 = (mm(1,:) == 1);
x(2,imm1) = x(1,imm1);
## Interval indices.
pi = max (min (floor (p), mm-1), 1);
pr = max (min (p - pi, 1), 0);
pi += pcd;
inv(k,:) = (1-pr) .* x(pi) + pr .* x(pi+1);
endswitch
endif
endfunction
|