1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
|
########################################################################
##
## Copyright (C) 1995-2024 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING. If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################
## -*- texinfo -*-
## @deftypefn {} {@var{y} =} ranks (@var{x})
## @deftypefnx {} {@var{y} =} ranks (@var{x}, @var{dim})
## @deftypefnx {} {@var{y} =} ranks (@var{x}, @var{dim}, @var{rtype})
## Return the ranks (in the sense of order statistics) of @var{x} along the
## first non-singleton dimension adjusted for ties.
##
## If the optional @var{dim} argument is given, operate along this dimension.
##
## The optional parameter @var{rtype} determines how ties are handled. All
## examples below assume an input of @code{[ 1, 2, 2, 4 ]}.
##
## @table @asis
## @item 0 or @qcode{"fractional"} (default) for fractional ranking (1, 2.5,
## 2.5, 4);
##
## @item 1 or @qcode{"competition"} for competition ranking (1, 2, 2, 4);
##
## @item 2 or @qcode{"modified"} for modified competition ranking (1, 3, 3, 4);
##
## @item 3 or @qcode{"ordinal"} for ordinal ranking (1, 2, 3, 4);
##
## @item 4 or @qcode{"dense"} for dense ranking (1, 2, 2, 3).
## @end table
##
## @seealso{spearman, kendall}
## @end deftypefn
function y = ranks (x, dim, rtype = 0)
if (nargin < 1)
print_usage ();
endif
if (! (isnumeric (x) || islogical (x)))
error ("ranks: X must be a numeric vector or matrix");
endif
nd = ndims (x);
sz = size (x);
if (nargin < 2 || isempty (dim))
## Find the first non-singleton dimension.
(dim = find (sz > 1, 1)) || (dim = 1);
else
if (! (isscalar (dim) && dim == fix (dim) && dim > 0))
error ("ranks: DIM must be an integer and a valid dimension");
endif
endif
if (sz(dim) == 1)
y = ones (sz); # dimension DIM is singleton, so all are ranked first.
else
## The algorithm works only on dim = 1, so permute if necessary.
## FIXME: Most all functions now accept a dim argument.
## Would it be faster not to permute and use the dim argument
## to sort, find, cumsum, etc.?
if (dim != 1)
perm = [1 : nd];
perm(1) = dim;
perm(dim) = 1;
x = permute (x, perm);
sz = size (x);
endif
[sx, ids] = sort (x); # sx is sorted x.
lin = repmat ((1:rows (x))', [1, sz(2:end)]); # linearly increasing array.
switch (rtype)
case {0, "fractional"}
lin = (_competition (lin, sx, sz) + _modified (lin, sx, sz)) / 2;
case {1, "competition"}
lin = _competition (lin, sx, sz);
case {2, "modified"}
lin = _modified (lin, sx, sz);
case {3, "ordinal"}
## no processing needed here.
case {4, "dense"}
lin = _dense (lin, sx, sz);
otherwise
if (! ischar (rtype))
rtype = num2str (rtype);
endif
error ("ranks: unknown RTYPE '%s'", rtype);
endswitch
y = NaN (size (lin));
## Offsets to map indices into each column to indices into the linear array.
## FIXME: Would sub2ind be faster here?
idf = zeros (sz);
idf(1, :) = 0 : sz(1) : (numel (ids)-1);
idf(:, :) = repmat (idf(1, :), [sz(1), ones(1,length(sz)-1)]);
y(ids + idf) = lin;
if (dim != 1)
y = permute (y, perm);
endif
endif
endfunction
function linnew = _dense (lin, sx, sz)
infvec = -Inf ([1, sz(2:end)]);
fnewp = logical (diff ([infvec; sx]));
linnew = cumsum (fnewp, 1);
endfunction
function linnew = _competition (lin, sx, sz)
## Stop increasing lin when sx does not increase. Otherwise, same as before.
infvec = -Inf ([1, sz(2:end)]);
fnewp = find (diff ([infvec; sx]));
linnew = zeros (size (lin));
linnew(fnewp) = lin(fnewp);
linnew = cummax (linnew, 1);
endfunction
function linnew = _modified (lin, sx, sz)
## Traverse lin backwards. Stop decreasing it when sx doesn't decrease.
infvec = Inf ([1, sz(2:end)]);
fnewp = find (diff ([sx; infvec]));
linnew = Inf (size (lin));
linnew(fnewp) = lin(fnewp);
linnew = flip (cummin (flip (linnew, 1)), 1);
endfunction
%!assert (ranks (1:2:10), 1:5)
%!assert (ranks (10:-2:1), 5:-1:1)
%!assert (ranks ([2, 1, 2, 4]), [2.5, 1, 2.5, 4])
%!assert (ranks (ones (1, 5)), 3*ones (1, 5))
%!assert (ranks (1e6*ones (1, 5)), 3*ones (1, 5))
%!assert (ranks (rand (1, 5), 1), ones (1, 5))
%!assert (ranks ([1, 2, 2, 4], [], "fractional"), [1, 2.5, 2.5, 4])
%!assert (ranks ([1, 2, 2, 4], [], "competition"), [1, 2, 2, 4])
%!assert (ranks ([1, 2, 2, 4], [], "modified"), [1, 3, 3, 4])
%!assert (ranks ([1, 2, 2, 4], [], "ordinal"), [1, 2, 3, 4])
%!assert (ranks ([1, 2, 2, 4], [], "dense"), [1, 2, 2, 3])
## Test input validation
%!error <Invalid call> ranks ()
%!error <X must be a numeric vector or matrix> ranks ({1, 2})
%!error <X must be a numeric vector or matrix> ranks (['A'; 'B'])
%!error <DIM must be an integer> ranks (1, 1.5)
%!error <DIM must be .* a valid dimension> ranks (1, 0)
%!error <unknown RTYPE 'foobar'> ranks (ones (2), 1, "foobar")
|