File: ranks.m

package info (click to toggle)
octave 9.4.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 144,300 kB
  • sloc: cpp: 332,784; ansic: 77,239; fortran: 20,963; objc: 9,396; sh: 8,213; yacc: 4,925; lex: 4,389; perl: 1,544; java: 1,366; awk: 1,259; makefile: 648; xml: 189
file content (176 lines) | stat: -rw-r--r-- 5,795 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
########################################################################
##
## Copyright (C) 1995-2024 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################

## -*- texinfo -*-
## @deftypefn  {} {@var{y} =} ranks (@var{x})
## @deftypefnx {} {@var{y} =} ranks (@var{x}, @var{dim})
## @deftypefnx {} {@var{y} =} ranks (@var{x}, @var{dim}, @var{rtype})
## Return the ranks (in the sense of order statistics) of @var{x} along the
## first non-singleton dimension adjusted for ties.
##
## If the optional @var{dim} argument is given, operate along this dimension.
##
## The optional parameter @var{rtype} determines how ties are handled.  All
## examples below assume an input of @code{[ 1, 2, 2, 4 ]}.
##
## @table @asis
## @item 0 or @qcode{"fractional"} (default) for fractional ranking (1, 2.5,
## 2.5, 4);
##
## @item 1 or @qcode{"competition"} for competition ranking (1, 2, 2, 4);
##
## @item 2 or @qcode{"modified"} for modified competition ranking (1, 3, 3, 4);
##
## @item 3 or @qcode{"ordinal"} for ordinal ranking (1, 2, 3, 4);
##
## @item 4 or @qcode{"dense"} for dense ranking (1, 2, 2, 3).
## @end table
##
## @seealso{spearman, kendall}
## @end deftypefn

function y = ranks (x, dim, rtype = 0)

  if (nargin < 1)
    print_usage ();
  endif

  if (! (isnumeric (x) || islogical (x)))
    error ("ranks: X must be a numeric vector or matrix");
  endif

  nd = ndims (x);
  sz = size (x);

  if (nargin < 2 || isempty (dim))
    ## Find the first non-singleton dimension.
    (dim = find (sz > 1, 1)) || (dim = 1);
  else
    if (! (isscalar (dim) && dim == fix (dim) && dim > 0))
      error ("ranks: DIM must be an integer and a valid dimension");
    endif
  endif

  if (sz(dim) == 1)
    y = ones (sz);  # dimension DIM is singleton, so all are ranked first.
  else
    ## The algorithm works only on dim = 1, so permute if necessary.
    ## FIXME: Most all functions now accept a dim argument.
    ##        Would it be faster not to permute and use the dim argument
    ##        to sort, find, cumsum, etc.?
    if (dim != 1)
      perm = [1 : nd];
      perm(1) = dim;
      perm(dim) = 1;
      x = permute (x, perm);
      sz = size (x);
    endif

    [sx, ids] = sort (x);  # sx is sorted x.
    lin = repmat ((1:rows (x))', [1, sz(2:end)]);  # linearly increasing array.

    switch (rtype)
      case {0, "fractional"}
        lin = (_competition (lin, sx, sz) + _modified (lin, sx, sz)) / 2;
      case {1, "competition"}
        lin = _competition (lin, sx, sz);
      case {2, "modified"}
        lin = _modified (lin, sx, sz);
      case {3, "ordinal"}
        ## no processing needed here.
      case {4, "dense"}
        lin = _dense (lin, sx, sz);
      otherwise
        if (! ischar (rtype))
          rtype = num2str (rtype);
        endif
        error ("ranks: unknown RTYPE '%s'", rtype);
    endswitch

    y = NaN (size (lin));

    ## Offsets to map indices into each column to indices into the linear array.
    ## FIXME: Would sub2ind be faster here?
    idf = zeros (sz);
    idf(1, :) = 0 : sz(1) : (numel (ids)-1);
    idf(:, :) = repmat (idf(1, :), [sz(1), ones(1,length(sz)-1)]);
    y(ids + idf) = lin;

    if (dim != 1)
      y = permute (y, perm);
    endif
  endif

endfunction

function linnew = _dense (lin, sx, sz)
  infvec = -Inf ([1, sz(2:end)]);
  fnewp = logical (diff ([infvec; sx]));
  linnew = cumsum (fnewp, 1);
endfunction

function linnew = _competition (lin, sx, sz)

  ## Stop increasing lin when sx does not increase.  Otherwise, same as before.
  infvec = -Inf ([1, sz(2:end)]);
  fnewp = find (diff ([infvec; sx]));
  linnew = zeros (size (lin));
  linnew(fnewp) = lin(fnewp);
  linnew = cummax (linnew, 1);

endfunction

function linnew = _modified (lin, sx, sz)

  ## Traverse lin backwards.  Stop decreasing it when sx doesn't decrease.
  infvec = Inf ([1, sz(2:end)]);
  fnewp = find (diff ([sx; infvec]));
  linnew = Inf (size (lin));
  linnew(fnewp) = lin(fnewp);
  linnew = flip (cummin (flip (linnew, 1)), 1);

endfunction


%!assert (ranks (1:2:10), 1:5)
%!assert (ranks (10:-2:1), 5:-1:1)
%!assert (ranks ([2, 1, 2, 4]), [2.5, 1, 2.5, 4])
%!assert (ranks (ones (1, 5)), 3*ones (1, 5))
%!assert (ranks (1e6*ones (1, 5)), 3*ones (1, 5))
%!assert (ranks (rand (1, 5), 1), ones (1, 5))

%!assert (ranks ([1, 2, 2, 4], [], "fractional"), [1, 2.5, 2.5, 4])
%!assert (ranks ([1, 2, 2, 4], [], "competition"), [1, 2, 2, 4])
%!assert (ranks ([1, 2, 2, 4], [], "modified"), [1, 3, 3, 4])
%!assert (ranks ([1, 2, 2, 4], [], "ordinal"), [1, 2, 3, 4])
%!assert (ranks ([1, 2, 2, 4], [], "dense"), [1, 2, 2, 3])

## Test input validation
%!error <Invalid call> ranks ()
%!error <X must be a numeric vector or matrix> ranks ({1, 2})
%!error <X must be a numeric vector or matrix> ranks (['A'; 'B'])
%!error <DIM must be an integer> ranks (1, 1.5)
%!error <DIM must be .* a valid dimension> ranks (1, 0)
%!error <unknown RTYPE 'foobar'> ranks (ones (2), 1, "foobar")