1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
|
########################################################################
##
## Copyright (C) 1995-2024 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING. If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################
## -*- texinfo -*-
## @deftypefn {} {@var{cnt} =} run_count (@var{x}, @var{n})
## @deftypefnx {} {@var{cnt} =} run_count (@var{x}, @var{n}, @var{dim})
## Count the upward runs along the first non-singleton dimension of @var{x}
## of length 1, 2, @dots{}, @var{n}-1 and greater than or equal to @var{n}.
##
## If the optional argument @var{dim} is given then operate along this
## dimension.
## @seealso{runlength}
## @end deftypefn
function cnt = run_count (x, n, dim)
if (nargin < 2)
print_usage ();
endif
if (! (isnumeric (x) || islogical (x)))
error ("run_count: X must be a numeric vector or matrix");
endif
if (! (isscalar (n) && n == fix (n) && n > 0))
error ("run_count: N must be a positive integer");
endif
nd = ndims (x);
sz = size (x);
if (nargin != 3)
## Find the first non-singleton dimension.
(dim = find (sz > 1, 1)) || (dim = 1);
else
if (!(isscalar (dim) && dim == fix (dim))
|| !(1 <= dim && dim <= nd))
error ("run_count: DIM must be an integer and a valid dimension");
endif
endif
## Algorithm works on rows. Permute array if necessary, ipermute back at end
if (dim != 1)
perm = [1 : nd];
perm(1) = dim;
perm(dim) = 1;
x = permute (x, perm);
endif
sz = size (x);
idx = cell ();
for i = 1 : nd
idx{i} = 1 : sz(i);
endfor
c = sz(1);
tmp = zeros ([c + 1, sz(2 : end)]);
infvec = Inf ([1, sz(2 : end)]);
ind = find (diff ([infvec; x; -infvec]) < 0);
tmp(ind(2:end) - 1) = diff (ind);
tmp = tmp(idx{:});
sz(1) = n;
cnt = zeros (sz);
for k = 1 : (n-1)
idx{1} = k;
cnt(idx{:}) = sum (tmp == k);
endfor
idx{1} = n;
cnt(idx{:}) = sum (tmp >= n);
if (dim != 1)
cnt = ipermute (cnt, perm);
endif
endfunction
%!assert (run_count (magic (3), 4), [1,0,1;1,0,1;0,1,0;0,0,0])
%!assert (run_count (magic (3), 4, 2), [1,0,1;1,0,1;0,1,0;0,0,0]')
%!assert (run_count (5:-1:1, 5), [5, 0, 0, 0, 0])
%!assert (run_count (ones (3), 4), [0,0,0;0,0,0;1,1,1;0,0,0])
## Test input validation
%!error <Invalid call> run_count ()
%!error <Invalid call> run_count (1)
%!error run_count ({1, 2}, 3)
%!error run_count (['A'; 'A'; 'B'], 3)
%!error run_count (1:5, ones (2,2))
%!error run_count (1:5, 1.5)
%!error run_count (1:5, -2)
%!error run_count (1:5, 3, ones (2,2))
%!error run_count (1:5, 3, 1.5)
%!error run_count (1:5, 3, 0)
|