1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
|
########################################################################
##
## Copyright (C) 1996-2024 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING. If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################
## -*- texinfo -*-
## @deftypefn {} {@var{y} =} skewness (@var{x})
## @deftypefnx {} {@var{y} =} skewness (@var{x}, @var{flag})
## @deftypefnx {} {@var{y} =} skewness (@var{x}, @var{flag}, @var{dim})
## Compute the sample skewness of the elements of @var{x}.
##
## The sample skewness is defined as
## @tex
## $$
## {\rm skewness} (@var{x}) = {{{1\over N}\,
## \sum_{i=1}^N (x_i - \bar{x})^3} \over \sigma^3},
## $$
## where $N$ is the length of @var{x}, $\bar{x}$ its mean and $\sigma$
## its (uncorrected) standard deviation.
## @end tex
## @ifnottex
##
## @example
## @group
## mean ((@var{x} - mean (@var{x})).^3)
## skewness (@var{X}) = ------------------------.
## std (@var{x}).^3
## @end group
## @end example
##
## @end ifnottex
##
## @noindent
## The optional argument @var{flag} controls which normalization is used.
## If @var{flag} is equal to 1 (default value, used when @var{flag} is omitted
## or empty), return the sample skewness as defined above. If @var{flag} is
## equal to 0, return the adjusted skewness coefficient instead:
## @tex
## $$
## {\rm skewness} (@var{x}) = {\sqrt{N (N - 1)} \over N - 2} \times \,
## {{{1 \over N} \sum_{i=1}^N (x_i - \bar{x})^3} \over \sigma^3}
## $$
## @end tex
## @ifnottex
##
## @example
## @group
## sqrt (N*(N-1)) mean ((@var{x} - mean (@var{x})).^3)
## skewness (@var{X}, 0) = -------------- * ------------------------.
## (N - 2) std (@var{x}).^3
## @end group
## @end example
##
## @noindent
## where @math{N} is the length of the @var{x} vector.
##
## @end ifnottex
## The adjusted skewness coefficient is obtained by replacing the sample second
## and third central moments by their bias-corrected versions.
##
## If @var{x} is a matrix, or more generally a multi-dimensional array, return
## the skewness along the first non-singleton dimension. If the optional
## @var{dim} argument is given, operate along this dimension.
##
## @seealso{var, kurtosis, moment}
## @end deftypefn
function y = skewness (x, flag, dim)
if (nargin < 1)
print_usage ();
endif
if (! (isnumeric (x) || islogical (x)))
error ("skewness: X must be a numeric vector or matrix");
endif
if (nargin < 2 || isempty (flag))
flag = 1; # default: do not use the "bias corrected" version
elseif (! isscalar (flag) || (flag != 0 && flag != 1))
error ("skewness: FLAG must be 0 or 1");
endif
nd = ndims (x);
sz = size (x);
if (nargin < 3)
## Find the first non-singleton dimension.
(dim = find (sz > 1, 1)) || (dim = 1);
else
if (! (isscalar (dim) && dim == fix (dim) && dim > 0))
error ("skewness: DIM must be an integer and a valid dimension");
endif
endif
n = size (x, dim);
sz(dim) = 1;
x = center (x, dim); # center also promotes integer, logical to double
s = std (x, 1, dim); # Normalize with 1/N
y = sum (x .^ 3, dim);
idx = (s != 0);
y(idx) ./= (n * s(idx) .^ 3);
y(! idx) = NaN;
## Apply bias correction to the second and third central sample moment
if (flag == 0)
if (n > 2)
y *= sqrt (n * (n - 1)) / (n - 2);
else
y(:) = NaN;
endif
endif
endfunction
%!assert (skewness ([-1, 0, 1]), 0)
%!assert (skewness ([-2, 0, 1]) < 0)
%!assert (skewness ([-1, 0, 2]) > 0)
%!assert (skewness ([-3, 0, 1]) == -1 * skewness ([-1, 0, 3]))
%!assert (skewness (ones (3, 5)), NaN (1, 5))
%!assert (skewness (1, [], 3), NaN)
%!test
%! x = [0; 0; 0; 1];
%! y = [x, 2*x];
%! assert (skewness (y), 1.154700538379251 * [1 1], 5*eps);
%!assert (skewness ([1:5 10; 1:5 10], 0, 2), 1.439590274527954 * [1; 1], eps)
%!assert (skewness ([1:5 10; 1:5 10], 1, 2), 1.051328089232020 * [1; 1], 2*eps)
%!assert (skewness ([1:5 10; 1:5 10], [], 2), 1.051328089232020 * [1; 1], 2*eps)
## Test behavior on single input
%!assert (skewness (single ([1:5 10])), single (1.0513283), eps ("single"))
%!assert (skewness (single ([1 2]), 0), single (NaN))
## Verify no warnings
%!test
%! lastwarn (""); # clear last warning
%! skewness (1);
%! assert (lastwarn (), "");
## Test input validation
%!error <Invalid call> skewness ()
%!error <X must be a numeric vector or matrix> skewness (['A'; 'B'])
%!error <FLAG must be 0 or 1> skewness (1, 2)
%!error <FLAG must be 0 or 1> skewness (1, [1 0])
%!error <DIM must be an integer> skewness (1, [], ones (2,2))
%!error <DIM must be an integer> skewness (1, [], 1.5)
%!error <DIM must be .* a valid dimension> skewness (1, [], 0)
|