File: dec2base.m

package info (click to toggle)
octave 9.4.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 144,300 kB
  • sloc: cpp: 332,784; ansic: 77,239; fortran: 20,963; objc: 9,396; sh: 8,213; yacc: 4,925; lex: 4,389; perl: 1,544; java: 1,366; awk: 1,259; makefile: 648; xml: 189
file content (329 lines) | stat: -rw-r--r-- 11,647 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
########################################################################
##
## Copyright (C) 2000-2024 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################

## -*- texinfo -*-
## @deftypefn  {} {@var{str} =} dec2base (@var{d}, @var{base})
## @deftypefnx {} {@var{str} =} dec2base (@var{d}, @var{base}, @var{len})
## @deftypefnx {} {@var{str} =} dec2base (@var{d}, @var{base}, @var{len}, @var{decimals})
## Return a string of symbols in base @var{base} corresponding to the
## value @var{d}.
##
## @example
## @group
## dec2base (123, 3)
##    @result{} "11120"
## @end group
## @end example
##
## If @var{d} is negative, then the result will represent @var{d} in complement
## notation.  For example, negative binary numbers are in twos-complement, and
## analogously for other bases.
##
## If @var{d} is a matrix or cell array, return a string matrix with one row
## per element in @var{d}, padded with leading zeros to the width of the
## largest value.
##
## If @var{base} is a string then the characters of @var{base} are used as
## the symbols for the digits of @var{d}.  Whitespace (spaces, tabs, newlines,
##, etc.@:) may not be used as a symbol.
##
## @example
## @group
## dec2base (123, "aei")
##    @result{} "eeeia"
## @end group
## @end example
##
## The optional third argument, @var{len}, specifies the minimum number of
## digits in the integer part of the result.  If this is omitted, then
## @code{dec2base} uses enough digits to accommodate the input.
##
## The optional fourth argument, @var{decimals}, specifies the number of
## digits to represent the fractional part of the input.  If this is omitted,
## then it is set to zero, and @code{dec2base} returns an integer output for
## backward compatibility.
##
## @example
## @group
## dec2base (100*pi, 16)
## @result{} "13A"
## dec2base (100*pi, 16, 4)
## @result{} "013A"
## dec2base (100*pi, 16, 4, 6)
## @result{} "013A.28C59D"
## dec2base (-100*pi, 16)
## @result{} "EC6"
## dec2base (-100*pi, 16, 4)
## @result{} "FEC6"
## dec2base (-100*pi, 16, 4, 6)
## @result{} "FEC5.D73A63"
## @end group
## @end example
##
## Programming tip: When passing negative inputs to @code{dec2base}, it is
## best to explicitly specify the length of the output required.
##
## @seealso{base2dec, dec2bin, dec2hex}
## @end deftypefn

function str = dec2base (d, base, len, decimals = 0)

  if (nargin < 2)
    print_usage ();
  endif

  if (iscell (d))
    d = cell2mat (d);
  endif

  ## Create column vector for algorithm
  d = d(:);

  ## Treat logical as numeric for compatibility with ML
  if (islogical (d))
    d = double (d);
  elseif (! isnumeric (d) || iscomplex (d))
    error ("dec2base: input must be real numbers");
  endif

  ## Note which elements are negative for processing later.
  ## This also needs special processing for the corresponding intmax.
  belowlim = false (size (d));
  if (isinteger (d))
    belowlim = (d <= intmin (class (d)));
  endif
  neg = (d < 0);
  d(neg) = -d(neg);

  ## Pull out the fractional part for processing later
  fracpart = d - floor (d);
  d = floor (d);

  symbols = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ";
  if (ischar (base))
    symbols = base(:).';  # force a row vector
    base = numel (symbols);
    if (numel (unique (symbols)) != base)
      error ("dec2base: symbols representing digits must be unique");
    elseif (any (isspace (symbols)))
      error ("dec2base: whitespace characters are not valid symbols");
    endif
  elseif (! isscalar (base) || ! isreal (base) || fix (base) != base
          || base < 2 || base > 36)
    error ("dec2base: BASE must be an integer between 2 and 36, or a string of symbols");
  endif

  ## Determine number of digits required to handle all numbers.
  max_len = round (log (max (max (d), 1)) / log (base)) + 1;

  if (nargin >= 3)
    if (! (isscalar (len) && isreal (len) && len >= 0 && len == fix (len)))
      error ("dec2base: LEN must be a non-negative integer");
    endif
    max_len = max (max_len, len);
  endif

  ## Determine digits for each number
  digits = zeros (numel (d), max_len);
  for k = max_len:-1:1
    digits(:, k) = mod (d, base);
    d = round ((d - digits(:, k)) / base);
  endfor

  ## Compute any fractional part and append
  digits2 = zeros (rows (digits), decimals);
  if (nargin == 4 && decimals > 0)
    for k = 1:decimals
      fracpart *= base;
      digits2(:, k) = floor (fracpart);
      fracpart -= floor (fracpart);
    endfor
  endif

  ## Handle negative inputs now
  for k = find (neg)(:)'
    digits(k, :) = (base-1) - digits(k, :);
    if (! isempty (digits2))
      digits2(k, :) = (base - 1) - digits2(k, :);
    endif

    if (! isempty (digits2))
      j = columns (digits2);
      digits2 (k, j) += 1;  # this is a generalization of two's complement
      while (digits2(j) >= base && j > 1)
        digits2(k, j) -= base;
        digits2(k, j-1) += 1;
        j -= 1;
      endwhile
      if (digits2(k, 1) >= base)  # carry over to integer part
        digits2(k, 1) -= base;
        digits(k, end) += 1;
      endif
    else  # no fractional part ==> increment integer part
      digits(k, end) += 1;
    endif

    if (belowlim (k))  # we need to handle an extra +1
      digits(k, end) -= 1;
      ## Reason: consider the input intmin("int64"),
      ## which is -(2)^64 of type int64.
      ## The code above takes its negation but that exceeds intmax("int64"),
      ## so it's pegged back to 1 lower than what it needs to be, due to
      ## the inherent limitation of the representation.
      ## We add that 1 back here, but because the original sign was negative,
      ## and we are dealing with complement notation, we subtract it instead.
    endif

    j = columns (digits);
    while (digits(k, j) >= base && j > 1)
      digits(k, j) -= base;
      digits(k, j-1) += 1;
      j -= 1;
    endwhile

    if (digits(k, 1) >= base)  # augment by one place if really needed
      digits(k, 1) -= base;
      digits = [zeros(rows(digits), 1), digits];
      digits(k, 1) += 1;
      ## FIXME Should we left-pad with zeros or with (base-1) in this context?
    endif
  endfor

  ## Convert digits to symbols: integer part
  str = reshape (symbols(digits+1), size (digits));

  ## Convert digits to symbols: fractional part
  ## Append fractional part to str if needed.
  if (! isempty (digits2))
    str2 = reshape (symbols(digits2+1), size (digits2));
    str = [str, repmat('.', rows(str), 1), str2];
  endif

  ## Check if the first element is the zero symbol.  It seems possible
  ## that LEN is provided, and is less than the computed MAX_LEN and
  ## MAX_LEN is computed to be one larger than necessary, so we would
  ## have a leading zero to remove.  But if LEN >= MAX_LEN, we should
  ## not remove any leading zeros.
  if ((nargin == 2 || (nargin >= 3 && max_len > len))
      && columns (str) != 1 && ! any (str(:,1) != symbols(1))
      && (~any(neg)))
    str = str(:,2:end);
  endif

endfunction


%!test
%! s0 = "";
%! for n = 1:13
%!   for b = 2:16
%!     pp = dec2base (b^n+1, b);
%!     assert (dec2base (b^n, b), ['1',s0,'0']);
%!     assert (dec2base (b^n+1, b), ['1',s0,'1']);
%!   endfor
%!   s0 = [s0,'0'];
%! endfor

## Test positive fractional inputs
%!assert (dec2base (pi,  2, 0, 16), "11.0010010000111111")
%!assert (dec2base ( e,  2, 2, 16), "10.1011011111100001")
%!assert (dec2base (pi,  3, 0, 16), "10.0102110122220102")
%!assert (dec2base ( e,  3, 0, 16), "2.2011011212211020")
%!assert (dec2base (pi, 16, 0, 10), "3.243F6A8885")
%!assert (dec2base ( e, 16, 0, 10), "2.B7E151628A")

## Test negative inputs: all correct in complement notation
%!assert (dec2base (-1,   10),        "9")
%!assert (dec2base (-1,   10, 3),     "999")
%!assert (dec2base (-1,   10, 3,  2), "999.00")
%!assert (dec2base (-1.1, 10, 3,  2), "998.90")
%!assert (dec2base (-pi,  2,  8, 16), "11111100.1101101111000001")
%!assert (dec2base (-pi,  3,  8, 16), "22222212.2120112100002121")
%!assert (dec2base (-pi, 16,  8, 10), "FFFFFFFC.DBC095777B")
%!assert (dec2base ( -e,  2,  8, 16), "11111101.0100100000011111")
%!assert (dec2base ( -e,  3,  8, 16), "22222220.0211211010011210")
%!assert (dec2base ( -e, 16,  8, 10), "FFFFFFFD.481EAE9D76")

## Test negative inputs close to powers of bases
%!assert (dec2base (-128, 2), "10000000")
%!assert (dec2base (-129, 2, 9), "101111111")
%!assert (dec2base (-129, 2), "01111111")
## FIXME: should dec2base (-129, 2) return "01111111" or ""101111111"?
## The second is an explicit 9-bit universe. The first is an implied 9-bit
## universe but the user needs to be careful not to mistake it for +127, which
## is true in modular arithmetic anyway (i.e., +127 == -129 in 8-bits).
## Currently we work around this by telling the user in `help dec2base` to
## explicitly set the lengths when working with negative numbers.

## Test intmin values
%!assert (dec2base (intmin ("int8"), 2), "10000000")
%!assert (dec2base (intmin ("int16"), 2), "1000000000000000")
%!assert (dec2base (intmin ("int32"), 2), "10000000000000000000000000000000")
%!assert (dec2base (intmin ("int64"), 2), "1000000000000000000000000000000000000000000000000000000000000000")

%!test
%! digits = "0123456789ABCDEF";
%! for n = 1:13
%!   for b = 2:16
%!     pm = dec2base (b^n-1, b);
%!     assert (numel (pm), n);
%!     assert (all (pm == digits(b)));
%!   endfor
%! endfor

%!test
%! for b = 2:16
%!   assert (dec2base (0, b), '0');
%! endfor

%!assert (dec2base (0, 2, 4), "0000")
%!assert (dec2base (2^51-1, 2), ...
%!        "111111111111111111111111111111111111111111111111111")
%!assert (dec2base (uint64 (2)^63-1, 16), "7FFFFFFFFFFFFFFF")
%!assert (dec2base ([1, 2; 3, 4], 2, 3), ["001"; "011"; "010"; "100"])
%!assert (dec2base ({1, 2; 3, 4}, 2, 3), ["001"; "011"; "010"; "100"])

%!test
%! a = 0:3;
%! assert (dec2base (! a, 2, 1), ["1"; "0"; "0"; "0"]);

%!assert <*56005> (dec2base ([0, 0], 16), ["0"; "0"])

## Test input validation
%!error <Invalid call> dec2base ()
%!error <Invalid call> dec2base (1)
%!error <dec2base: input must be real numbers> dec2base ("A", 10)
%!error <dec2base: input must be real numbers> dec2base (2i, 10)
%!error <symbols representing digits must be unique> dec2base (1, "ABA")
%!error <whitespace characters are not valid symbols> dec2base (1, "A B")
%!error <BASE must be an integer> dec2base (1, ones (2))
%!error <BASE must be an integer> dec2base (1, 2i)
%!error <BASE must be an integer> dec2base (1, 2.5)
%!error <BASE must be .* between 2 and 36> dec2base (1, 1)
%!error <BASE must be .* between 2 and 36> dec2base (1, 37)
%!error <LEN must be a non-negative integer> dec2base (1, 2, ones (2))
%!error <LEN must be a non-negative integer> dec2base (1, 2, 2i)
%!error <LEN must be a non-negative integer> dec2base (1, 2, -1)
%!error <LEN must be a non-negative integer> dec2base (1, 2, 2.5)