1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
|
########################################################################
##
## Copyright (C) 2000-2024 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING. If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################
## -*- texinfo -*-
## @deftypefn {} {@var{str} =} dec2base (@var{d}, @var{base})
## @deftypefnx {} {@var{str} =} dec2base (@var{d}, @var{base}, @var{len})
## @deftypefnx {} {@var{str} =} dec2base (@var{d}, @var{base}, @var{len}, @var{decimals})
## Return a string of symbols in base @var{base} corresponding to the
## value @var{d}.
##
## @example
## @group
## dec2base (123, 3)
## @result{} "11120"
## @end group
## @end example
##
## If @var{d} is negative, then the result will represent @var{d} in complement
## notation. For example, negative binary numbers are in twos-complement, and
## analogously for other bases.
##
## If @var{d} is a matrix or cell array, return a string matrix with one row
## per element in @var{d}, padded with leading zeros to the width of the
## largest value.
##
## If @var{base} is a string then the characters of @var{base} are used as
## the symbols for the digits of @var{d}. Whitespace (spaces, tabs, newlines,
##, etc.@:) may not be used as a symbol.
##
## @example
## @group
## dec2base (123, "aei")
## @result{} "eeeia"
## @end group
## @end example
##
## The optional third argument, @var{len}, specifies the minimum number of
## digits in the integer part of the result. If this is omitted, then
## @code{dec2base} uses enough digits to accommodate the input.
##
## The optional fourth argument, @var{decimals}, specifies the number of
## digits to represent the fractional part of the input. If this is omitted,
## then it is set to zero, and @code{dec2base} returns an integer output for
## backward compatibility.
##
## @example
## @group
## dec2base (100*pi, 16)
## @result{} "13A"
## dec2base (100*pi, 16, 4)
## @result{} "013A"
## dec2base (100*pi, 16, 4, 6)
## @result{} "013A.28C59D"
## dec2base (-100*pi, 16)
## @result{} "EC6"
## dec2base (-100*pi, 16, 4)
## @result{} "FEC6"
## dec2base (-100*pi, 16, 4, 6)
## @result{} "FEC5.D73A63"
## @end group
## @end example
##
## Programming tip: When passing negative inputs to @code{dec2base}, it is
## best to explicitly specify the length of the output required.
##
## @seealso{base2dec, dec2bin, dec2hex}
## @end deftypefn
function str = dec2base (d, base, len, decimals = 0)
if (nargin < 2)
print_usage ();
endif
if (iscell (d))
d = cell2mat (d);
endif
## Create column vector for algorithm
d = d(:);
## Treat logical as numeric for compatibility with ML
if (islogical (d))
d = double (d);
elseif (! isnumeric (d) || iscomplex (d))
error ("dec2base: input must be real numbers");
endif
## Note which elements are negative for processing later.
## This also needs special processing for the corresponding intmax.
belowlim = false (size (d));
if (isinteger (d))
belowlim = (d <= intmin (class (d)));
endif
neg = (d < 0);
d(neg) = -d(neg);
## Pull out the fractional part for processing later
fracpart = d - floor (d);
d = floor (d);
symbols = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ";
if (ischar (base))
symbols = base(:).'; # force a row vector
base = numel (symbols);
if (numel (unique (symbols)) != base)
error ("dec2base: symbols representing digits must be unique");
elseif (any (isspace (symbols)))
error ("dec2base: whitespace characters are not valid symbols");
endif
elseif (! isscalar (base) || ! isreal (base) || fix (base) != base
|| base < 2 || base > 36)
error ("dec2base: BASE must be an integer between 2 and 36, or a string of symbols");
endif
## Determine number of digits required to handle all numbers.
max_len = round (log (max (max (d), 1)) / log (base)) + 1;
if (nargin >= 3)
if (! (isscalar (len) && isreal (len) && len >= 0 && len == fix (len)))
error ("dec2base: LEN must be a non-negative integer");
endif
max_len = max (max_len, len);
endif
## Determine digits for each number
digits = zeros (numel (d), max_len);
for k = max_len:-1:1
digits(:, k) = mod (d, base);
d = round ((d - digits(:, k)) / base);
endfor
## Compute any fractional part and append
digits2 = zeros (rows (digits), decimals);
if (nargin == 4 && decimals > 0)
for k = 1:decimals
fracpart *= base;
digits2(:, k) = floor (fracpart);
fracpart -= floor (fracpart);
endfor
endif
## Handle negative inputs now
for k = find (neg)(:)'
digits(k, :) = (base-1) - digits(k, :);
if (! isempty (digits2))
digits2(k, :) = (base - 1) - digits2(k, :);
endif
if (! isempty (digits2))
j = columns (digits2);
digits2 (k, j) += 1; # this is a generalization of two's complement
while (digits2(j) >= base && j > 1)
digits2(k, j) -= base;
digits2(k, j-1) += 1;
j -= 1;
endwhile
if (digits2(k, 1) >= base) # carry over to integer part
digits2(k, 1) -= base;
digits(k, end) += 1;
endif
else # no fractional part ==> increment integer part
digits(k, end) += 1;
endif
if (belowlim (k)) # we need to handle an extra +1
digits(k, end) -= 1;
## Reason: consider the input intmin("int64"),
## which is -(2)^64 of type int64.
## The code above takes its negation but that exceeds intmax("int64"),
## so it's pegged back to 1 lower than what it needs to be, due to
## the inherent limitation of the representation.
## We add that 1 back here, but because the original sign was negative,
## and we are dealing with complement notation, we subtract it instead.
endif
j = columns (digits);
while (digits(k, j) >= base && j > 1)
digits(k, j) -= base;
digits(k, j-1) += 1;
j -= 1;
endwhile
if (digits(k, 1) >= base) # augment by one place if really needed
digits(k, 1) -= base;
digits = [zeros(rows(digits), 1), digits];
digits(k, 1) += 1;
## FIXME Should we left-pad with zeros or with (base-1) in this context?
endif
endfor
## Convert digits to symbols: integer part
str = reshape (symbols(digits+1), size (digits));
## Convert digits to symbols: fractional part
## Append fractional part to str if needed.
if (! isempty (digits2))
str2 = reshape (symbols(digits2+1), size (digits2));
str = [str, repmat('.', rows(str), 1), str2];
endif
## Check if the first element is the zero symbol. It seems possible
## that LEN is provided, and is less than the computed MAX_LEN and
## MAX_LEN is computed to be one larger than necessary, so we would
## have a leading zero to remove. But if LEN >= MAX_LEN, we should
## not remove any leading zeros.
if ((nargin == 2 || (nargin >= 3 && max_len > len))
&& columns (str) != 1 && ! any (str(:,1) != symbols(1))
&& (~any(neg)))
str = str(:,2:end);
endif
endfunction
%!test
%! s0 = "";
%! for n = 1:13
%! for b = 2:16
%! pp = dec2base (b^n+1, b);
%! assert (dec2base (b^n, b), ['1',s0,'0']);
%! assert (dec2base (b^n+1, b), ['1',s0,'1']);
%! endfor
%! s0 = [s0,'0'];
%! endfor
## Test positive fractional inputs
%!assert (dec2base (pi, 2, 0, 16), "11.0010010000111111")
%!assert (dec2base ( e, 2, 2, 16), "10.1011011111100001")
%!assert (dec2base (pi, 3, 0, 16), "10.0102110122220102")
%!assert (dec2base ( e, 3, 0, 16), "2.2011011212211020")
%!assert (dec2base (pi, 16, 0, 10), "3.243F6A8885")
%!assert (dec2base ( e, 16, 0, 10), "2.B7E151628A")
## Test negative inputs: all correct in complement notation
%!assert (dec2base (-1, 10), "9")
%!assert (dec2base (-1, 10, 3), "999")
%!assert (dec2base (-1, 10, 3, 2), "999.00")
%!assert (dec2base (-1.1, 10, 3, 2), "998.90")
%!assert (dec2base (-pi, 2, 8, 16), "11111100.1101101111000001")
%!assert (dec2base (-pi, 3, 8, 16), "22222212.2120112100002121")
%!assert (dec2base (-pi, 16, 8, 10), "FFFFFFFC.DBC095777B")
%!assert (dec2base ( -e, 2, 8, 16), "11111101.0100100000011111")
%!assert (dec2base ( -e, 3, 8, 16), "22222220.0211211010011210")
%!assert (dec2base ( -e, 16, 8, 10), "FFFFFFFD.481EAE9D76")
## Test negative inputs close to powers of bases
%!assert (dec2base (-128, 2), "10000000")
%!assert (dec2base (-129, 2, 9), "101111111")
%!assert (dec2base (-129, 2), "01111111")
## FIXME: should dec2base (-129, 2) return "01111111" or ""101111111"?
## The second is an explicit 9-bit universe. The first is an implied 9-bit
## universe but the user needs to be careful not to mistake it for +127, which
## is true in modular arithmetic anyway (i.e., +127 == -129 in 8-bits).
## Currently we work around this by telling the user in `help dec2base` to
## explicitly set the lengths when working with negative numbers.
## Test intmin values
%!assert (dec2base (intmin ("int8"), 2), "10000000")
%!assert (dec2base (intmin ("int16"), 2), "1000000000000000")
%!assert (dec2base (intmin ("int32"), 2), "10000000000000000000000000000000")
%!assert (dec2base (intmin ("int64"), 2), "1000000000000000000000000000000000000000000000000000000000000000")
%!test
%! digits = "0123456789ABCDEF";
%! for n = 1:13
%! for b = 2:16
%! pm = dec2base (b^n-1, b);
%! assert (numel (pm), n);
%! assert (all (pm == digits(b)));
%! endfor
%! endfor
%!test
%! for b = 2:16
%! assert (dec2base (0, b), '0');
%! endfor
%!assert (dec2base (0, 2, 4), "0000")
%!assert (dec2base (2^51-1, 2), ...
%! "111111111111111111111111111111111111111111111111111")
%!assert (dec2base (uint64 (2)^63-1, 16), "7FFFFFFFFFFFFFFF")
%!assert (dec2base ([1, 2; 3, 4], 2, 3), ["001"; "011"; "010"; "100"])
%!assert (dec2base ({1, 2; 3, 4}, 2, 3), ["001"; "011"; "010"; "100"])
%!test
%! a = 0:3;
%! assert (dec2base (! a, 2, 1), ["1"; "0"; "0"; "0"]);
%!assert <*56005> (dec2base ([0, 0], 16), ["0"; "0"])
## Test input validation
%!error <Invalid call> dec2base ()
%!error <Invalid call> dec2base (1)
%!error <dec2base: input must be real numbers> dec2base ("A", 10)
%!error <dec2base: input must be real numbers> dec2base (2i, 10)
%!error <symbols representing digits must be unique> dec2base (1, "ABA")
%!error <whitespace characters are not valid symbols> dec2base (1, "A B")
%!error <BASE must be an integer> dec2base (1, ones (2))
%!error <BASE must be an integer> dec2base (1, 2i)
%!error <BASE must be an integer> dec2base (1, 2.5)
%!error <BASE must be .* between 2 and 36> dec2base (1, 1)
%!error <BASE must be .* between 2 and 36> dec2base (1, 37)
%!error <LEN must be a non-negative integer> dec2base (1, 2, ones (2))
%!error <LEN must be a non-negative integer> dec2base (1, 2, 2i)
%!error <LEN must be a non-negative integer> dec2base (1, 2, -1)
%!error <LEN must be a non-negative integer> dec2base (1, 2, 2.5)
|