1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
|
########################################################################
##
## Copyright (C) 2002-2024 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING. If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################
## -*- texinfo -*-
## @deftypefn {} {@var{s} =} mat2str (@var{x}, @var{n})
## @deftypefnx {} {@var{s} =} mat2str (@var{x}, @var{n}, "class")
## Format real, complex, and logical matrices as strings.
##
## The returned string may be used to reconstruct the original matrix by using
## the @code{eval} function.
##
## The precision of the values is given by @var{n}. If @var{n} is a scalar
## then both real and imaginary parts of the matrix are printed to the same
## precision. Otherwise @code{@var{n}(1)} defines the precision of the real
## part and @code{@var{n}(2)} defines the precision of the imaginary part.
## The default for @var{n} is 15.
##
## If the argument @qcode{"class"} is given then the class of @var{x} is
## included in the string in such a way that @code{eval} will result in the
## construction of a matrix of the same class.
##
## @example
## @group
## mat2str ([ -1/3 + i/7; 1/3 - i/7 ], [4 2])
## @result{} "[-0.3333+0.14i;0.3333-0.14i]"
##
## mat2str ([ -1/3 +i/7; 1/3 -i/7 ], [4 2])
## @result{} "[-0.3333+0i 0+0.14i;0.3333+0i -0-0.14i]"
##
## mat2str (int16 ([1 -1]), "class")
## @result{} "int16([1 -1])"
##
## mat2str (logical (eye (2)))
## @result{} "[true false;false true]"
##
## isequal (x, eval (mat2str (x)))
## @result{} 1
## @end group
## @end example
##
## @seealso{sprintf, num2str, int2str}
## @end deftypefn
function s = mat2str (x, n = 15, cls = "")
if (nargin < 1 || ! (isnumeric (x) || islogical (x)))
print_usage ();
elseif (ndims (x) > 2)
error ("mat2str: X must be two dimensional");
endif
if (nargin == 2 && ischar (n))
cls = n;
n = 15;
elseif (isempty (n))
n = 15; # Default precision
elseif (numel (n) > 2)
error ("mat2str: N must have only 1 or 2 elements");
else
n = fix (n);
endif
x_islogical = islogical (x);
x_iscomplex = iscomplex (x);
if (x_iscomplex)
if (isscalar (n))
n = [n, n];
endif
fmt = sprintf ("%%.%dg%%+.%dgi", n(1), n(2));
elseif (x_islogical)
v = {"false", "true"};
fmt = "%s";
else
fmt = sprintf ("%%.%dg", n(1));
endif
nel = numel (x);
if (nel == 0)
## Empty, only print brackets
s = "[]";
elseif (nel == 1)
## Scalar X, don't print brackets
if (x_iscomplex)
s = sprintf (fmt, real (x), imag (x));
elseif (x_islogical)
s = v{x+1};
else
s = sprintf (fmt, x);
endif
else
## Non-scalar X, print brackets
fmt = [fmt " "];
if (x_iscomplex)
t = x.';
s = sprintf (fmt, [real(t(:))'; imag(t(:))']);
elseif (x_islogical)
t = v(x.'+1);
s = cstrcat (sprintf (fmt, t{:}));
else
s = sprintf (fmt, x.');
endif
s = ["[" s];
s(end) = "]";
idx = strfind (s, " ");
nc = columns (x);
s(idx(nc:nc:end)) = ";";
endif
if (strcmp ("class", cls))
s = [class(x) "(" s ")"];
endif
endfunction
%!assert (mat2str (0.7), "0.7")
%!assert (mat2str (pi), "3.14159265358979")
%!assert (mat2str (pi, 5), "3.1416")
%!assert (mat2str (single (pi), 5, "class"), "single(3.1416)")
%!assert (mat2str ([-1/3 + i/7; 1/3 - i/7], [4 2]),
%! "[-0.3333+0.14i;0.3333-0.14i]")
%!assert (mat2str ([-1/3 +i/7; 1/3 -i/7], [4 2]),
%! "[-0.3333+0i 0+0.14i;0.3333+0i -0-0.14i]")
%!assert (mat2str (int16 ([1 -1]), "class"), "int16([1 -1])")
%!assert (mat2str (true), "true")
%!assert (mat2str (false), "false")
%!assert (mat2str (logical (eye (2))), "[true false;false true]")
%!assert (mat2str (logical ([0 1; 0 0])), "[false true;false false]")
## Test input validation
%!error <Invalid call> mat2str ()
%!error mat2str (["Hello"])
%!error <X must be two dimensional> mat2str (ones (3,3,2))
%!error <N must have only 1 or 2 elements> mat2str (ones (3,3), [1 2 3])
|