1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456
|
########################################################################
##
## Copyright (C) 2000-2024 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING. If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################
## -*- texinfo -*-
## @deftypefn {} {} speed (@var{f}, @var{init}, @var{max_n}, @var{f2}, @var{tol})
## @deftypefnx {} {[@var{order}, @var{n}, @var{T_f}, @var{T_f2}] =} speed (@dots{})
##
## Determine the execution time of an expression (@var{f}) for various input
## values (@var{n}).
##
## The @var{n} are log-spaced from 1 to @var{max_n}. For each @var{n}, an
## initialization expression (@var{init}) is computed to create any data needed
## for the test. If a second expression (@var{f2}) is given then the
## execution times of the two expressions are compared. When called without
## output arguments the results are printed to stdout and displayed
## graphically.
##
## @table @code
## @item @var{f}
## The code expression to evaluate.
##
## @item @var{max_n}
## The maximum test length to run. The default value is 100. Alternatively,
## use @code{[min_n, max_n]} or specify the @var{n} exactly with
## @code{[n1, n2, @dots{}, nk]}.
##
## @item @var{init}
## Initialization expression for function argument values. Use @var{k} for
## the test number and @var{n} for the size of the test. This should compute
## values for all variables used by @var{f}. Note that @var{init} will be
## evaluated first for @math{k = 0}, so things which are constant throughout
## the test series can be computed once. The default value is
## @code{@var{x} = randn (@var{n}, 1)}.
##
## @item @var{f2}
## An alternative expression to evaluate, so that the speed of two
## expressions can be directly compared. The default is @code{[]}.
##
## @item @var{tol}
## Tolerance used to compare the results of expression @var{f} and expression
## @var{f2}. If @var{tol} is positive, the tolerance is an absolute one.
## If @var{tol} is negative, the tolerance is a relative one. The default is
## @code{eps}. If @var{tol} is @code{Inf}, then no comparison will be made.
##
## @item @var{order}
## The time complexity of the expression @math{O(a*n^p)}. This is a
## structure with fields @code{a} and @code{p}.
##
## @item @var{n}
## The values @var{n} for which the expression was calculated @strong{AND}
## the execution time was greater than zero.
##
## @item @var{T_f}
## The nonzero execution times recorded for the expression @var{f} in seconds.
##
## @item @var{T_f2}
## The nonzero execution times recorded for the expression @var{f2} in seconds.
## If required, the mean time ratio is simply @code{mean (T_f ./ T_f2)}.
##
## @end table
##
## The slope of the execution time graph shows the approximate power of the
## asymptotic running time @math{O(n^p)}. This power is plotted for the
## region over which it is approximated (the latter half of the graph). The
## estimated power is not very accurate, but should be sufficient to
## determine the general order of an algorithm. It should indicate if, for
## example, the implementation is unexpectedly @math{O(n^2)} rather than
## @math{O(n)} because it extends a vector each time through the loop rather
## than pre-allocating storage. In the current version of Octave, the
## following is not the expected @math{O(n)}.
##
## @example
## speed ("for i = 1:n, y@{i@} = x(i); endfor", "", [1000, 10000])
## @end example
##
## @noindent
## But it is if you preallocate the cell array @code{y}:
##
## @example
## @group
## speed ("for i = 1:n, y@{i@} = x(i); endfor", ...
## "x = rand (n, 1); y = cell (size (x));", [1000, 10000])
## @end group
## @end example
##
## An attempt is made to approximate the cost of individual operations, but
## it is wildly inaccurate. You can improve the stability somewhat by doing
## more work for each @code{n}. For example:
##
## @example
## speed ("airy(x)", "x = rand (n, 10)", [10000, 100000])
## @end example
##
## When comparing two different expressions (@var{f}, @var{f2}), the slope of
## the line on the speedup ratio graph should be larger than 1 if the new
## expression is faster. Better algorithms have a shallow slope. Generally,
## vectorizing an algorithm will not change the slope of the execution time
## graph, but will shift it relative to the original. For example:
##
## @example
## @group
## speed ("sum (x)", "", [10000, 100000], ...
## "v = 0; for i = 1:length (x), v += x(i); endfor")
## @end group
## @end example
##
## The following is a more complex example. If there was an original version
## of @code{xcorr} using for loops and a second version using an FFT, then
## one could compare the run speed for various lags as follows, or for a fixed
## lag with varying vector lengths as follows:
##
## @example
## @group
## speed ("xcorr (x, n)", "x = rand (128, 1);", 100,
## "xcorr_orig (x, n)", -100*eps)
## speed ("xcorr (x, 15)", "x = rand (20+n, 1);", 100,
## "xcorr_orig (x, n)", -100*eps)
## @end group
## @end example
##
## Assuming one of the two versions is in xcorr_orig, this would compare their
## speed and their output values. Note that the FFT version is not exact, so
## one must specify an acceptable tolerance on the comparison @code{100*eps}.
## In this case, the comparison should be computed relatively, as
## @code{abs ((@var{x} - @var{y}) ./ @var{y})} rather than absolutely as
## @code{abs (@var{x} - @var{y})}.
##
## Type @kbd{example ("speed")} to see some real examples or
## @kbd{demo ("speed")} to run them.
##
## @end deftypefn
## Programming Note: All variables for speed must use the internal prefix "__".
## Shared variables are eval'ed into the current workspace and therefore might
## collide with the names used in the speed.m function itself.
## FIXME: consider two dimensional speedup surfaces for functions like kron.
function [__order, __test_n, __tnew, __torig] = speed (__f1, __init, __max_n = 100, __f2 = "", __tol = eps)
if (nargin < 1)
print_usage ();
endif
if (nargin < 2 || isempty (__init))
__init = "x = randn (n, 1)";
endif
if (isempty (__max_n))
__max_n = 100;
endif
__numtests = 15;
## Let user specify range of n.
if (isscalar (__max_n))
__min_n = 1;
assert (__max_n > __min_n);
__test_n = logspace (0, log10 (__max_n), __numtests);
elseif (length (__max_n) == 2)
[__min_n, __max_n] = deal (__max_n(1), __max_n(2));
assert (__min_n >= 1);
assert (__max_n > __min_n);
__test_n = logspace (log10 (__min_n), log10 (__max_n), __numtests);
else
assert (all (__max_n > 0));
__test_n = __max_n;
endif
## Force n to be an integer.
__test_n = unique (round (__test_n));
assert (__test_n >= 1);
__torig = __tnew = zeros (size (__test_n));
## Print and plot the data if no output is requested.
do_display = (nargout == 0);
if (do_display)
disp (["testing " __f1 "\ninit: " __init]);
endif
## Add semicolon closure to all code fragments in case user has not done so.
__init(end+1) = ";";
__f1(end+1) = ";";
if (! isempty (__f2))
__f2(end+1) = ";";
endif
## Make sure the functions are freshly loaded by evaluating them at
## test_n(1); first have to initialize the args though.
n = 1;
k = 0;
eval (__init);
eval (__f1);
if (! isempty (__f2))
eval (__f2);
endif
## Run the tests.
for k = 1:length (__test_n)
n = __test_n(k);
eval (__init);
if (do_display)
printf ("n%i = %i ", k, n);
fflush (stdout);
endif
eval (["__tid = tic();" __f1 "__v1=ans; __t = toc(__tid);"]);
if (__t < 0.25)
eval (["__tid = tic();" __f1 "__t2 = toc(__tid);"]);
eval (["__tid = tic();" __f1 "__t3 = toc(__tid);"]);
__t = min ([__t, __t2, __t3]);
endif
__tnew(k) = __t;
if (! isempty (__f2))
eval (["__tid = tic();" __f2 "__v2=ans; __t = toc(__tid);"]);
if (__t < 0.25)
eval (["__tid = tic();" __f2 "__t2 = toc(__tid);"]);
eval (["__tid = tic();" __f2 "__t3 = toc(__tid);"]);
__t = min ([__t, __t2, __t3]);
endif
__torig(k) = __t;
if (! isinf (__tol))
assert (__v1, __v2, __tol);
endif
endif
endfor
## Drop times of zero.
if (isempty (__f2))
zidx = (__tnew < 100*eps);
__test_n(zidx) = [];
__tnew(zidx) = [];
else
zidx = (__tnew < 100*eps | __torig < 100*eps);
__test_n(zidx) = [];
__tnew(zidx) = [];
__torig(zidx) = [];
endif
if (isempty (__test_n))
error (["speed: All running times were zero.\n",
"error: speed: Choose larger MAX_N or do more work per function evaluation"]);
endif
## Approximate time complexity and return it if requested.
tailidx = ceil (length (__test_n)/2):length (__test_n);
p = polyfit (log (__test_n(tailidx)), log (__tnew(tailidx)), 1);
if (nargout > 0)
__order.p = p(1);
__order.a = exp (p(2));
endif
if (do_display)
figure ();
## Strip semicolon added to code fragments before displaying
__init(end) = "";
__f1(end) = "";
if (! isempty (__f2))
__f2(end) = "";
endif
endif
if (do_display && isempty (__f2))
loglog (__test_n, __tnew*1000, "*-g;execution time;");
xlabel ("test length");
ylabel ("best execution time (ms)");
title ({__f1, ["init: " __init]});
elseif (do_display)
subplot (1, 2, 1);
semilogx (__test_n, __tnew ./ __torig, "-*g",
__test_n, __torig ./ __tnew, "-*r");
legend ({[strrep(__f1, ";", ".") " / " strrep(__f2, ";", ".")],
[strrep(__f2, ";", ".") " / " strrep(__f1, ";", ".")]},
"location", "northwest");
title ("Speedup Ratio");
xlabel ("test length");
ylabel ("speedup ratio");
subplot (1, 2, 2);
loglog (__test_n, __tnew*1000, "*-g",
__test_n, __torig*1000, "*-r");
legend ({strrep(__f1,";","."),
strrep(__f2,";",".")},
"location", "northwest");
title ({"Execution Times", ["init: " __init]});
xlabel ("test length");
ylabel ("best execution time (ms)");
ratio = mean (__torig ./ __tnew);
printf ("\n\nMean runtime ratio = %.3g for '%s' vs '%s'\n",
ratio, __f2, __f1);
endif
if (do_display)
## Plot time complexity approximation (using milliseconds).
figure; # Open second plot window
order = round (10*p(1))/10;
if (order >= 0.1)
order = sprintf ("O(n^%g)", order);
else
order = "O(1)";
endif
v = polyval (p, log (__test_n(tailidx)));
loglog (__test_n(tailidx), exp (v) * 1000, sprintf ("b;%s;", order));
title ({"Time Complexity", __f1});
xlabel ("test length");
## Get base time to 1 digit of accuracy.
dt = exp (p(2));
dt = floor (dt/10^floor (log10 (dt)))*10^floor (log10 (dt));
if (log10 (dt) >= -0.5)
time = sprintf ("%g s", dt);
elseif (log10 (dt) >= -3.5)
time = sprintf ("%g ms", dt*1e3);
elseif (log10 (dt) >= -6.5)
time = sprintf ("%g us", dt*1e6);
else
time = sprintf ("%g ns", dt*1e9);
endif
## Display nicely formatted complexity.
printf ("\nFor %s:\n", __f1);
printf (" asymptotic power: %s\n", order);
printf (" approximate time per operation: %s\n", time);
endif
endfunction
## FIXME: Demos with declared functions do not work. See bug #31815.
## A workaround has been hacked by not declaring the functions
## but using eval to create them in the proper context.
## Unfortunately, we can't remove them from the user's workspace
## because of another bug (#34497).
%!demo
%! fstr_build_orig = cstrcat (
%! "function x = build_orig (n)\n",
%! " ## extend the target vector on the fly\n",
%! " for i=0:n-1, x([1:100]+i*100) = 1:100; endfor\n",
%! "endfunction");
%! fstr_build = cstrcat (
%! "function x = build (n)\n",
%! " ## preallocate the target vector\n",
%! " x = zeros (1, n*100);\n",
%! " for i=0:n-1, x([1:100]+i*100) = 1:100; endfor\n",
%! "endfunction");
%!
%! disp ("-----------------------");
%! disp (fstr_build_orig);
%! disp ("-----------------------");
%! disp (fstr_build);
%! disp ("-----------------------");
%!
%! ## Eval functions strings to create them in the current context
%! eval (fstr_build_orig);
%! eval (fstr_build);
%!
%! disp ("Preallocated vector test.\nThis takes a little while...");
%! speed ("build (n)", "", 1000, "build_orig (n)");
%! clear -f build build_orig
%! disp ("-----------------------");
%! disp ("Note how much faster it is to pre-allocate a vector.");
%! disp ("Notice the peak speedup ratio.");
%!demo
%! fstr_build_orig = cstrcat (
%! "function x = build_orig (n)\n",
%! " for i=0:n-1, x([1:100]+i*100) = 1:100; endfor\n",
%! "endfunction");
%! fstr_build = cstrcat (
%! "function x = build (n)\n",
%! " idx = [1:100]';\n",
%! " x = idx(:,ones (1,n));\n",
%! " x = reshape (x, 1, n*100);\n",
%! "endfunction");
%!
%! disp ("-----------------------");
%! disp (fstr_build_orig);
%! disp ("-----------------------");
%! disp (fstr_build);
%! disp ("-----------------------");
%!
%! ## Eval functions strings to create them in the current context
%! eval (fstr_build_orig);
%! eval (fstr_build);
%!
%! disp ("Vectorized test.\nThis takes a little while...");
%! speed ("build (n)", "", 1000, "build_orig (n)");
%! clear -f build build_orig
%! disp ("-----------------------");
%! disp ("This time, the for loop is done away with entirely.");
%! disp ("Notice how much bigger the speedup is than in example 1.");
## FIXME: Tests may fail on operating systems with low resolution timers such
## as MinGW. If a failure is reported, it might be better to either
## force the tests to do more work, or use %!testif to check the OS.
%!test
%! [order, n, T_f1, T_f2] = speed ("airy (x)", "x = rand (n, 10)", [100, 1000]);
%! assert (isstruct (order));
%! assert (size (order), [1, 1]);
%! assert (fieldnames (order), {"p"; "a"});
%! assert (isnumeric (n));
%! assert (length (n) > 10);
%! assert (isnumeric (T_f1));
%! assert (size (T_f1), size (n));
%! assert (isnumeric (T_f2));
%! assert (length (T_f2) > 10);
%!test
%! [order, n, T_f1, T_f2] = speed ("sum (x)", "", [100, 1000], ...
%! "v = 0; for i = 1:length (x), v += x(i); endfor");
%! assert (isstruct (order));
%! assert (size (order), [1, 1]);
%! assert (fieldnames (order), {"p"; "a"});
%! assert (isnumeric (n));
%! assert (length (n) > 10);
%! assert (isnumeric (T_f1));
%! assert (size (T_f1), size (n));
%! assert (isnumeric (T_f2));
%! assert (length (T_f2) > 10);
## Test input validation
%!error <Invalid call> speed ()
|