File: speed.m

package info (click to toggle)
octave 9.4.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 144,300 kB
  • sloc: cpp: 332,784; ansic: 77,239; fortran: 20,963; objc: 9,396; sh: 8,213; yacc: 4,925; lex: 4,389; perl: 1,544; java: 1,366; awk: 1,259; makefile: 648; xml: 189
file content (456 lines) | stat: -rw-r--r-- 15,428 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
########################################################################
##
## Copyright (C) 2000-2024 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################

## -*- texinfo -*-
## @deftypefn  {} {} speed (@var{f}, @var{init}, @var{max_n}, @var{f2}, @var{tol})
## @deftypefnx {} {[@var{order}, @var{n}, @var{T_f}, @var{T_f2}] =} speed (@dots{})
##
## Determine the execution time of an expression (@var{f}) for various input
## values (@var{n}).
##
## The @var{n} are log-spaced from 1 to @var{max_n}.  For each @var{n}, an
## initialization expression (@var{init}) is computed to create any data needed
## for the test.  If a second expression (@var{f2}) is given then the
## execution times of the two expressions are compared.  When called without
## output arguments the results are printed to stdout and displayed
## graphically.
##
## @table @code
## @item @var{f}
## The code expression to evaluate.
##
## @item @var{max_n}
## The maximum test length to run.  The default value is 100.  Alternatively,
## use @code{[min_n, max_n]} or specify the @var{n} exactly with
## @code{[n1, n2, @dots{}, nk]}.
##
## @item @var{init}
## Initialization expression for function argument values.  Use @var{k} for
## the test number and @var{n} for the size of the test.  This should compute
## values for all variables used by @var{f}.  Note that @var{init} will be
## evaluated first for @math{k = 0}, so things which are constant throughout
## the test series can be computed once.  The default value is
## @code{@var{x} = randn (@var{n}, 1)}.
##
## @item @var{f2}
## An alternative expression to evaluate, so that the speed of two
## expressions can be directly compared.  The default is @code{[]}.
##
## @item @var{tol}
## Tolerance used to compare the results of expression @var{f} and expression
## @var{f2}.  If @var{tol} is positive, the tolerance is an absolute one.
## If @var{tol} is negative, the tolerance is a relative one.  The default is
## @code{eps}.  If @var{tol} is @code{Inf}, then no comparison will be made.
##
## @item @var{order}
## The time complexity of the expression @math{O(a*n^p)}.  This is a
## structure with fields @code{a} and @code{p}.
##
## @item @var{n}
## The values @var{n} for which the expression was calculated @strong{AND}
## the execution time was greater than zero.
##
## @item @var{T_f}
## The nonzero execution times recorded for the expression @var{f} in seconds.
##
## @item @var{T_f2}
## The nonzero execution times recorded for the expression @var{f2} in seconds.
## If required, the mean time ratio is simply @code{mean (T_f ./ T_f2)}.
##
## @end table
##
## The slope of the execution time graph shows the approximate power of the
## asymptotic running time @math{O(n^p)}.  This power is plotted for the
## region over which it is approximated (the latter half of the graph).  The
## estimated power is not very accurate, but should be sufficient to
## determine the general order of an algorithm.  It should indicate if, for
## example, the implementation is unexpectedly @math{O(n^2)} rather than
## @math{O(n)} because it extends a vector each time through the loop rather
## than pre-allocating storage.  In the current version of Octave, the
## following is not the expected @math{O(n)}.
##
## @example
## speed ("for i = 1:n, y@{i@} = x(i); endfor", "", [1000, 10000])
## @end example
##
## @noindent
## But it is if you preallocate the cell array @code{y}:
##
## @example
## @group
## speed ("for i = 1:n, y@{i@} = x(i); endfor", ...
##        "x = rand (n, 1); y = cell (size (x));", [1000, 10000])
## @end group
## @end example
##
## An attempt is made to approximate the cost of individual operations, but
## it is wildly inaccurate.  You can improve the stability somewhat by doing
## more work for each @code{n}.  For example:
##
## @example
## speed ("airy(x)", "x = rand (n, 10)", [10000, 100000])
## @end example
##
## When comparing two different expressions (@var{f}, @var{f2}), the slope of
## the line on the speedup ratio graph should be larger than 1 if the new
## expression is faster.  Better algorithms have a shallow slope.  Generally,
## vectorizing an algorithm will not change the slope of the execution time
## graph, but will shift it relative to the original.  For example:
##
## @example
## @group
## speed ("sum (x)", "", [10000, 100000], ...
##        "v = 0; for i = 1:length (x), v += x(i); endfor")
## @end group
## @end example
##
## The following is a more complex example.  If there was an original version
## of @code{xcorr} using for loops and a second version using an FFT, then
## one could compare the run speed for various lags as follows, or for a fixed
## lag with varying vector lengths as follows:
##
## @example
## @group
## speed ("xcorr (x, n)", "x = rand (128, 1);", 100,
##        "xcorr_orig (x, n)", -100*eps)
## speed ("xcorr (x, 15)", "x = rand (20+n, 1);", 100,
##        "xcorr_orig (x, n)", -100*eps)
## @end group
## @end example
##
## Assuming one of the two versions is in xcorr_orig, this would compare their
## speed and their output values.  Note that the FFT version is not exact, so
## one must specify an acceptable tolerance on the comparison @code{100*eps}.
## In this case, the comparison should be computed relatively, as
## @code{abs ((@var{x} - @var{y}) ./ @var{y})} rather than absolutely as
## @code{abs (@var{x} - @var{y})}.
##
## Type @kbd{example ("speed")} to see some real examples or
## @kbd{demo ("speed")} to run them.
##
## @end deftypefn

## Programming Note: All variables for speed must use the internal prefix "__".
## Shared variables are eval'ed into the current workspace and therefore might
## collide with the names used in the speed.m function itself.

## FIXME: consider two dimensional speedup surfaces for functions like kron.
function [__order, __test_n, __tnew, __torig] = speed (__f1, __init, __max_n = 100, __f2 = "", __tol = eps)

  if (nargin < 1)
    print_usage ();
  endif

  if (nargin < 2 || isempty (__init))
    __init = "x = randn (n, 1)";
  endif

  if (isempty (__max_n))
    __max_n = 100;
  endif

  __numtests = 15;

  ## Let user specify range of n.
  if (isscalar (__max_n))
    __min_n = 1;
    assert (__max_n > __min_n);
    __test_n = logspace (0, log10 (__max_n), __numtests);
  elseif (length (__max_n) == 2)
    [__min_n, __max_n] = deal (__max_n(1), __max_n(2));
    assert (__min_n >= 1);
    assert (__max_n > __min_n);
    __test_n = logspace (log10 (__min_n), log10 (__max_n), __numtests);
  else
    assert (all (__max_n > 0));
    __test_n = __max_n;
  endif
  ## Force n to be an integer.
  __test_n = unique (round (__test_n));
  assert (__test_n >= 1);

  __torig = __tnew = zeros (size (__test_n));

  ## Print and plot the data if no output is requested.
  do_display = (nargout == 0);

  if (do_display)
    disp (["testing " __f1 "\ninit: " __init]);
  endif

  ## Add semicolon closure to all code fragments in case user has not done so.
  __init(end+1) = ";";
  __f1(end+1) = ";";
  if (! isempty (__f2))
    __f2(end+1) = ";";
  endif

  ## Make sure the functions are freshly loaded by evaluating them at
  ## test_n(1); first have to initialize the args though.
  n = 1;
  k = 0;
  eval (__init);
  eval (__f1);
  if (! isempty (__f2))
    eval (__f2);
  endif

  ## Run the tests.
  for k = 1:length (__test_n)
    n = __test_n(k);
    eval (__init);

    if (do_display)
      printf ("n%i = %i  ", k, n);
      fflush (stdout);
    endif

    eval (["__tid = tic();" __f1 "__v1=ans; __t = toc(__tid);"]);
    if (__t < 0.25)
      eval (["__tid = tic();" __f1 "__t2 = toc(__tid);"]);
      eval (["__tid = tic();" __f1 "__t3 = toc(__tid);"]);
      __t = min ([__t, __t2, __t3]);
    endif
    __tnew(k) = __t;

    if (! isempty (__f2))
      eval (["__tid = tic();" __f2 "__v2=ans; __t = toc(__tid);"]);
      if (__t < 0.25)
        eval (["__tid = tic();" __f2 "__t2 = toc(__tid);"]);
        eval (["__tid = tic();" __f2 "__t3 = toc(__tid);"]);
        __t = min ([__t, __t2, __t3]);
      endif
      __torig(k) = __t;
      if (! isinf (__tol))
        assert (__v1, __v2, __tol);
      endif
    endif

  endfor

  ## Drop times of zero.
  if (isempty (__f2))
    zidx = (__tnew < 100*eps);
    __test_n(zidx) = [];
    __tnew(zidx) = [];
  else
    zidx = (__tnew < 100*eps | __torig < 100*eps);
    __test_n(zidx) = [];
    __tnew(zidx) = [];
    __torig(zidx) = [];
  endif

  if (isempty (__test_n))
    error (["speed: All running times were zero.\n",
            "error: speed: Choose larger MAX_N or do more work per function evaluation"]);
  endif

  ## Approximate time complexity and return it if requested.
  tailidx = ceil (length (__test_n)/2):length (__test_n);
  p = polyfit (log (__test_n(tailidx)), log (__tnew(tailidx)), 1);
  if (nargout > 0)
    __order.p = p(1);
    __order.a = exp (p(2));
  endif

  if (do_display)
    figure ();
    ## Strip semicolon added to code fragments before displaying
    __init(end) = "";
    __f1(end) = "";
    if (! isempty (__f2))
      __f2(end) = "";
    endif
  endif

  if (do_display && isempty (__f2))

    loglog (__test_n, __tnew*1000, "*-g;execution time;");
    xlabel ("test length");
    ylabel ("best execution time (ms)");
    title ({__f1, ["init: " __init]});

  elseif (do_display)

    subplot (1, 2, 1);
    semilogx (__test_n, __tnew ./ __torig, "-*g",
              __test_n, __torig ./ __tnew, "-*r");
    legend ({[strrep(__f1, ";", ".") " / " strrep(__f2, ";", ".")],
             [strrep(__f2, ";", ".") " / " strrep(__f1, ";", ".")]},
            "location", "northwest");
    title ("Speedup Ratio");
    xlabel ("test length");
    ylabel ("speedup ratio");

    subplot (1, 2, 2);
    loglog (__test_n, __tnew*1000, "*-g",
            __test_n, __torig*1000, "*-r");
    legend ({strrep(__f1,";","."),
             strrep(__f2,";",".")},
            "location", "northwest");
    title ({"Execution Times", ["init: " __init]});
    xlabel ("test length");
    ylabel ("best execution time (ms)");

    ratio = mean (__torig ./ __tnew);
    printf ("\n\nMean runtime ratio = %.3g for '%s' vs '%s'\n",
            ratio, __f2, __f1);

  endif

  if (do_display)

    ## Plot time complexity approximation (using milliseconds).
    figure;   # Open second plot window

    order = round (10*p(1))/10;
    if (order >= 0.1)
      order = sprintf ("O(n^%g)", order);
    else
      order = "O(1)";
    endif
    v = polyval (p, log (__test_n(tailidx)));

    loglog (__test_n(tailidx), exp (v) * 1000, sprintf ("b;%s;", order));
    title ({"Time Complexity", __f1});
    xlabel ("test length");

    ## Get base time to 1 digit of accuracy.
    dt = exp (p(2));
    dt = floor (dt/10^floor (log10 (dt)))*10^floor (log10 (dt));
    if (log10 (dt) >= -0.5)
      time = sprintf ("%g s", dt);
    elseif (log10 (dt) >= -3.5)
      time = sprintf ("%g ms", dt*1e3);
    elseif (log10 (dt) >= -6.5)
      time = sprintf ("%g us", dt*1e6);
    else
      time = sprintf ("%g ns", dt*1e9);
    endif

    ## Display nicely formatted complexity.
    printf ("\nFor %s:\n", __f1);
    printf ("  asymptotic power: %s\n", order);
    printf ("  approximate time per operation: %s\n", time);

  endif

endfunction


## FIXME: Demos with declared functions do not work.  See bug #31815.
##        A workaround has been hacked by not declaring the functions
##        but using eval to create them in the proper context.
##        Unfortunately, we can't remove them from the user's workspace
##        because of another bug (#34497).
%!demo
%! fstr_build_orig = cstrcat (
%!   "function x = build_orig (n)\n",
%!   "  ## extend the target vector on the fly\n",
%!   "  for i=0:n-1, x([1:100]+i*100) = 1:100; endfor\n",
%!   "endfunction");
%! fstr_build = cstrcat (
%!   "function x = build (n)\n",
%!   "  ## preallocate the target vector\n",
%!   "  x = zeros (1, n*100);\n",
%!   "  for i=0:n-1, x([1:100]+i*100) = 1:100; endfor\n",
%!   "endfunction");
%!
%! disp ("-----------------------");
%! disp (fstr_build_orig);
%! disp ("-----------------------");
%! disp (fstr_build);
%! disp ("-----------------------");
%!
%! ## Eval functions strings to create them in the current context
%! eval (fstr_build_orig);
%! eval (fstr_build);
%!
%! disp ("Preallocated vector test.\nThis takes a little while...");
%! speed ("build (n)", "", 1000, "build_orig (n)");
%! clear -f build build_orig
%! disp ("-----------------------");
%! disp ("Note how much faster it is to pre-allocate a vector.");
%! disp ("Notice the peak speedup ratio.");

%!demo
%! fstr_build_orig = cstrcat (
%!   "function x = build_orig (n)\n",
%!   "  for i=0:n-1, x([1:100]+i*100) = 1:100; endfor\n",
%!   "endfunction");
%! fstr_build = cstrcat (
%!   "function x = build (n)\n",
%!   "  idx = [1:100]';\n",
%!   "  x = idx(:,ones (1,n));\n",
%!   "  x = reshape (x, 1, n*100);\n",
%!   "endfunction");
%!
%! disp ("-----------------------");
%! disp (fstr_build_orig);
%! disp ("-----------------------");
%! disp (fstr_build);
%! disp ("-----------------------");
%!
%! ## Eval functions strings to create them in the current context
%! eval (fstr_build_orig);
%! eval (fstr_build);
%!
%! disp ("Vectorized test.\nThis takes a little while...");
%! speed ("build (n)", "", 1000, "build_orig (n)");
%! clear -f build build_orig
%! disp ("-----------------------");
%! disp ("This time, the for loop is done away with entirely.");
%! disp ("Notice how much bigger the speedup is than in example 1.");

## FIXME: Tests may fail on operating systems with low resolution timers such
##        as MinGW.  If a failure is reported, it might be better to either
##        force the tests to do more work, or use %!testif to check the OS.
%!test
%! [order, n, T_f1, T_f2] = speed ("airy (x)", "x = rand (n, 10)", [100, 1000]);
%! assert (isstruct (order));
%! assert (size (order), [1, 1]);
%! assert (fieldnames (order), {"p"; "a"});
%! assert (isnumeric (n));
%! assert (length (n) > 10);
%! assert (isnumeric (T_f1));
%! assert (size (T_f1), size (n));
%! assert (isnumeric (T_f2));
%! assert (length (T_f2) > 10);

%!test
%! [order, n, T_f1, T_f2] = speed ("sum (x)", "", [100, 1000], ...
%!                            "v = 0; for i = 1:length (x), v += x(i); endfor");
%! assert (isstruct (order));
%! assert (size (order), [1, 1]);
%! assert (fieldnames (order), {"p"; "a"});
%! assert (isnumeric (n));
%! assert (length (n) > 10);
%! assert (isnumeric (T_f1));
%! assert (size (T_f1), size (n));
%! assert (isnumeric (T_f2));
%! assert (length (T_f2) > 10);

## Test input validation
%!error <Invalid call> speed ()