1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
|
@c DO NOT EDIT! Generated automatically by munge-texi.
@c Copyright (C) 1996, 1997 John W. Eaton
@c This is part of the Octave manual.
@c For copying conditions, see the file gpl.texi.
@node Arithmetic
@chapter Arithmetic
Unless otherwise noted, all of the functions described in this chapter
will work for real and complex scalar or matrix arguments.
@menu
* Utility Functions::
* Complex Arithmetic::
* Trigonometry::
* Sums and Products::
* Special Functions::
* Coordinate Transformations::
* Mathematical Constants::
@end menu
@node Utility Functions
@section Utility Functions
The following functions are available for working with complex numbers.
Each expects a single argument. They are called @dfn{mapping functions}
because when given a matrix argument, they apply the given function to
each element of the matrix.
@anchor{doc-ceil}
@deftypefn {Mapping Function} {} ceil (@var{x})
Return the smallest integer not less than @var{x}. If @var{x} is
complex, return @code{ceil (real (@var{x})) + ceil (imag (@var{x})) * I}.
@end deftypefn
@anchor{doc-exp}
@deftypefn {Mapping Function} {} exp (@var{x})
Compute the exponential of @var{x}. To compute the matrix exponential,
see @ref{Linear Algebra}.
@end deftypefn
@anchor{doc-fix}
@deftypefn {Mapping Function} {} fix (@var{x})
Truncate @var{x} toward zero. If @var{x} is complex, return
@code{fix (real (@var{x})) + fix (imag (@var{x})) * I}.
@end deftypefn
@anchor{doc-floor}
@deftypefn {Mapping Function} {} floor (@var{x})
Return the largest integer not greater than @var{x}. If @var{x} is
complex, return @code{floor (real (@var{x})) + floor (imag (@var{x})) * I}.
@end deftypefn
@anchor{doc-gcd}
@deftypefn {Loadable Function} {@var{g} =} gcd (@var{a1}, @code{...})
@deftypefnx {Loadable Function} {[@var{g}, @var{v1}, @var{...}] =} gcd (@var{a1}, @code{...})
If a single argument is given then compute the greatest common divisor of
the elements of this argument. Otherwise if more than one argument is
given all arguments must be the same size or scalar. In this case the
greatest common divisor is calculated for element individually. All
elements must be integers. For example,
@example
@group
gcd ([15, 20])
@result{} 5
@end group
@end example
@noindent
and
@example
@group
gcd ([15, 9], [20 18])
@result{} 5 9
@end group
@end example
Optional return arguments @var{v1}, etc, contain integer vectors such
that,
@ifinfo
@example
@var{g} = @var{v1} .* @var{a1} + @var{v2} .* @var{a2} + @var{...}
@end example
@end ifinfo
@iftex
@tex
$g = v_1 a_1 + v_2 a_2 + \cdots$
@end tex
@end iftex
For backward compatiability with previous versions of this function, when
all arguments are scalr, a single return argument @var{v1} containing
all of the values of @var{v1}, @var{...} is acceptable.
@end deftypefn
@seealso{lcm, min, max, ceil, and floor}
@anchor{doc-lcm}
@deftypefn {Mapping Function} {} lcm (@var{x}, @code{...})
Compute the least common multiple of the elements elements of @var{x}, or
the list of all the arguments. For example,
@example
lcm (a1, ..., ak)
@end example
@noindent
is the same as
@example
lcm ([a1, ..., ak]).
@end example
All elements must be the same size or scalar.
@end deftypefn
@seealso{gcd, min, max, ceil, and floor}
@anchor{doc-log}
@deftypefn {Mapping Function} {} log (@var{x})
Compute the natural logarithm for each element of @var{x}. To compute the
matrix logarithm, see @ref{Linear Algebra}.
@end deftypefn
@seealso{log2, log10, logspace, and exp}
@anchor{doc-log10}
@deftypefn {Mapping Function} {} log10 (@var{x})
Compute the base-10 logarithm for each element of @var{x}.
@end deftypefn
@seealso{log, log2, logspace, and exp}
@anchor{doc-log2}
@deftypefn {Mapping Function} {} log2 (@var{x})
@deftypefnx {Mapping Function} {[@var{f}, @var{e}] =} log2 (@var{x})
Compute the base-2 logarithm of @var{x}. With two outputs, returns
@var{f} and @var{e} such that
@iftex
@tex
$1/2 <= |f| < 1$ and $x = f \cdot 2^e$.
@end tex
@end iftex
@ifinfo
1/2 <= abs(f) < 1 and x = f * 2^e.
@end ifinfo
@end deftypefn
@seealso{log, log10, logspace, and exp}
@anchor{doc-max}
@deftypefn {Mapping Function} {} max (@var{x}, @var{y}, @var{dim})
@deftypefnx {Mapping Function} {[@var{w}, @var{iw}] =} max (@var{x})
@cindex Utility Functions
For a vector argument, return the maximum value. For a matrix
argument, return the maximum value from each column, as a row
vector, or over the dimension @var{dim} if defined. For two matrices
(or a matrix and scalar), return the pair-wise maximum.
Thus,
@example
max (max (@var{x}))
@end example
@noindent
returns the largest element of @var{x}, and
@example
@group
max (2:5, pi)
@result{} 3.1416 3.1416 4.0000 5.0000
@end group
@end example
@noindent
compares each element of the range @code{2:5} with @code{pi}, and
returns a row vector of the maximum values.
For complex arguments, the magnitude of the elements are used for
comparison.
If called with one input and two output arguments,
@code{max} also returns the first index of the
maximum value(s). Thus,
@example
@group
[x, ix] = max ([1, 3, 5, 2, 5])
@result{} x = 5
ix = 3
@end group
@end example
@end deftypefn
@anchor{doc-min}
@deftypefn {Mapping Function} {} min (@var{x}, @var{y}, @var{dim})
@deftypefnx {Mapping Function} {[@var{w}, @var{iw}] =} min (@var{x})
@cindex Utility Functions
For a vector argument, return the minimum value. For a matrix
argument, return the minimum value from each column, as a row
vector, or over the dimension @var{dim} if defined. For two matrices
(or a matrix and scalar), return the pair-wise minimum.
Thus,
@example
min (min (@var{x}))
@end example
@noindent
returns the smallest element of @var{x}, and
@example
@group
min (2:5, pi)
@result{} 2.0000 3.0000 3.1416 3.1416
@end group
@end example
@noindent
compares each element of the range @code{2:5} with @code{pi}, and
returns a row vector of the minimum values.
For complex arguments, the magnitude of the elements are used for
comparison.
If called with one input and two output arguments,
@code{min} also returns the first index of the
minimum value(s). Thus,
@example
@group
[x, ix] = min ([1, 3, 0, 2, 5])
@result{} x = 0
ix = 3
@end group
@end example
@end deftypefn
@anchor{doc-mod}
@deftypefn {Mapping Function} {} mod (@var{x}, @var{y})
Compute modulo function, using
@example
x - y .* floor (x ./ y)
@end example
Note that this handles negative numbers correctly:
@code{mod (-1, 3)} is 2, not -1 as @code{rem (-1, 3)} returns.
Also, @code{mod (@var{x}, 0)} returns @var{x}.
An error message is printed if the dimensions of the arguments do not
agree, or if either of the arguments is complex.
@end deftypefn
@seealso{rem, round}
@anchor{doc-nextpow2}
@deftypefn {Function File} {} nextpow2 (@var{x})
If @var{x} is a scalar, returns the first integer @var{n} such that
@iftex
@tex
$2^n \ge |x|$.
@end tex
@end iftex
@ifinfo
2^n >= abs (x).
@end ifinfo
If @var{x} is a vector, return @code{nextpow2 (length (@var{x}))}.
@end deftypefn
@seealso{pow2}
@anchor{doc-pow2}
@deftypefn {Mapping Function} {} pow2 (@var{x})
@deftypefnx {Mapping Function} {} pow2 (@var{f}, @var{e})
With one argument, computes
@iftex
@tex
$2^x$
@end tex
@end iftex
@ifinfo
2 .^ x
@end ifinfo
for each element of @var{x}. With two arguments, returns
@iftex
@tex
$f \cdot 2^e$.
@end tex
@end iftex
@ifinfo
f .* (2 .^ e).
@end ifinfo
@end deftypefn
@seealso{nextpow2}
@anchor{doc-rem}
@deftypefn {Mapping Function} {} rem (@var{x}, @var{y})
Return the remainder of @code{@var{x} / @var{y}}, computed using the
expression
@example
x - y .* fix (x ./ y)
@end example
An error message is printed if the dimensions of the arguments do not
agree, or if either of the arguments is complex.
@end deftypefn
@seealso{mod, round}
@anchor{doc-round}
@deftypefn {Mapping Function} {} round (@var{x})
Return the integer nearest to @var{x}. If @var{x} is complex, return
@code{round (real (@var{x})) + round (imag (@var{x})) * I}.
@end deftypefn
@seealso{rem}
@anchor{doc-sign}
@deftypefn {Mapping Function} {} sign (@var{x})
Compute the @dfn{signum} function, which is defined as
@iftex
@tex
$$
{\rm sign} (@var{x}) = \cases{1,&$x>0$;\cr 0,&$x=0$;\cr -1,&$x<0$.\cr}
$$
@end tex
@end iftex
@ifinfo
@example
-1, x < 0;
sign (x) = 0, x = 0;
1, x > 0.
@end example
@end ifinfo
For complex arguments, @code{sign} returns @code{x ./ abs (@var{x})}.
@end deftypefn
@anchor{doc-sqrt}
@deftypefn {Mapping Function} {} sqrt (@var{x})
Compute the square root of @var{x}. If @var{x} is negative, a complex
result is returned. To compute the matrix square root, see
@ref{Linear Algebra}.
@end deftypefn
@node Complex Arithmetic
@section Complex Arithmetic
The following functions are available for working with complex
numbers. Each expects a single argument. Given a matrix they work on
an element by element basis. In the descriptions of the following
functions,
@iftex
@tex
$z$ is the complex number $x + iy$, where $i$ is defined as
$\sqrt{-1}$.
@end tex
@end iftex
@ifinfo
@var{z} is the complex number @var{x} + @var{i}@var{y}, where @var{i} is
defined as @code{sqrt (-1)}.
@end ifinfo
@anchor{doc-abs}
@deftypefn {Mapping Function} {} abs (@var{z})
Compute the magnitude of @var{z}, defined as
@iftex
@tex
$|z| = \sqrt{x^2 + y^2}$.
@end tex
@end iftex
@ifinfo
|@var{z}| = @code{sqrt (x^2 + y^2)}.
@end ifinfo
For example,
@example
@group
abs (3 + 4i)
@result{} 5
@end group
@end example
@end deftypefn
@anchor{doc-arg}
@deftypefn {Mapping Function} {} arg (@var{z})
@deftypefnx {Mapping Function} {} angle (@var{z})
Compute the argument of @var{z}, defined as
@iftex
@tex
$\theta = \tan^{-1}(y/x)$.
@end tex
@end iftex
@ifinfo
@var{theta} = @code{atan (@var{y}/@var{x})}.
@end ifinfo
@noindent
in radians.
For example,
@example
@group
arg (3 + 4i)
@result{} 0.92730
@end group
@end example
@end deftypefn
@anchor{doc-conj}
@deftypefn {Mapping Function} {} conj (@var{z})
Return the complex conjugate of @var{z}, defined as
@iftex
@tex
$\bar{z} = x - iy$.
@end tex
@end iftex
@ifinfo
@code{conj (@var{z})} = @var{x} - @var{i}@var{y}.
@end ifinfo
@end deftypefn
@seealso{real and imag}
@anchor{doc-imag}
@deftypefn {Mapping Function} {} imag (@var{z})
Return the imaginary part of @var{z} as a real number.
@end deftypefn
@seealso{real and conj}
@anchor{doc-real}
@deftypefn {Mapping Function} {} real (@var{z})
Return the real part of @var{z}.
@end deftypefn
@seealso{imag and conj}
@node Trigonometry
@section Trigonometry
Octave provides the following trigonometric functions. Angles are
specified in radians. To convert from degrees to radians multipy by
@iftex
@tex
$\pi/180$
@end tex
@end iftex
@ifinfo
@code{pi/180}
@end ifinfo
(e.g. @code{sin (30 * pi/180)} returns the sine of 30 degrees).
@anchor{doc-sin}
@deftypefn {Mapping Function} {} sin (@var{x})
Compute the sine of each element of @var{x}.
@end deftypefn
@anchor{doc-cos}
@deftypefn {Mapping Function} {} cos (@var{x})
Compute the cosine of each element of @var{x}.
@end deftypefn
@anchor{doc-tan}
@deftypefn {Mapping Function} {} tan (@var{z})
Compute tangent of each element of @var{x}.
@end deftypefn
@anchor{doc-sec}
@deftypefn {Mapping Function} {} sec (@var{x})
Compute the secant of each element of @var{x}.
@end deftypefn
@anchor{doc-csc}
@deftypefn {Mapping Function} {} csc (@var{x})
Compute the cosecant of each element of @var{x}.
@end deftypefn
@anchor{doc-cot}
@deftypefn {Mapping Function} {} cot (@var{x})
Compute the cotangent of each element of @var{x}.
@end deftypefn
@anchor{doc-asin}
@deftypefn {Mapping Function} {} asin (@var{x})
Compute the inverse sine of each element of @var{x}.
@end deftypefn
@anchor{doc-acos}
@deftypefn {Mapping Function} {} acos (@var{x})
Compute the inverse cosine of each element of @var{x}.
@end deftypefn
@anchor{doc-atan}
@deftypefn {Mapping Function} {} atan (@var{x})
Compute the inverse tangent of each element of @var{x}.
@end deftypefn
@anchor{doc-asec}
@deftypefn {Mapping Function} {} asec (@var{x})
Compute the inverse secant of each element of @var{x}.
@end deftypefn
@anchor{doc-acsc}
@deftypefn {Mapping Function} {} acsc (@var{x})
Compute the inverse cosecant of each element of @var{x}.
@end deftypefn
@anchor{doc-acot}
@deftypefn {Mapping Function} {} acot (@var{x})
Compute the inverse cotangent of each element of @var{x}.
@end deftypefn
@anchor{doc-sinh}
@deftypefn {Mapping Function} {} sinh (@var{x})
Compute the inverse hyperbolic sine of each element of @var{x}.
@end deftypefn
@anchor{doc-cosh}
@deftypefn {Mapping Function} {} cosh (@var{x})
Compute the hyperbolic cosine of each element of @var{x}.
@end deftypefn
@anchor{doc-tanh}
@deftypefn {Mapping Function} {} tanh (@var{x})
Compute hyperbolic tangent of each element of @var{x}.
@end deftypefn
@anchor{doc-sech}
@deftypefn {Mapping Function} {} sech (@var{x})
Compute the hyperbolic secant of each element of @var{x}.
@end deftypefn
@anchor{doc-csch}
@deftypefn {Mapping Function} {} csch (@var{x})
Compute the hyperbolic cosecant of each element of @var{x}.
@end deftypefn
@anchor{doc-coth}
@deftypefn {Mapping Function} {} coth (@var{x})
Compute the hyperbolic cotangent of each element of @var{x}.
@end deftypefn
@anchor{doc-asinh}
@deftypefn {Mapping Function} {} asinh (@var{x})
Compute the inverse hyperbolic sine of each element of @var{x}.
@end deftypefn
@anchor{doc-acosh}
@deftypefn {Mapping Function} {} acosh (@var{x})
Compute the inverse hyperbolic cosine of each element of @var{x}.
@end deftypefn
@anchor{doc-atanh}
@deftypefn {Mapping Function} {} atanh (@var{x})
Compute the inverse hyperbolic tangent of each element of @var{x}.
@end deftypefn
@anchor{doc-asech}
@deftypefn {Mapping Function} {} asech (@var{x})
Compute the inverse hyperbolic secant of each element of @var{x}.
@end deftypefn
@anchor{doc-acsch}
@deftypefn {Mapping Function} {} acsch (@var{x})
Compute the inverse hyperbolic cosecant of each element of @var{x}.
@end deftypefn
@anchor{doc-acoth}
@deftypefn {Mapping Function} {} acoth (@var{x})
Compute the inverse hyperbolic cotangent of each element of @var{x}.
@end deftypefn
Each of these functions expect a single argument. For matrix arguments,
they work on an element by element basis. For example,
@example
@group
sin ([1, 2; 3, 4])
@result{} 0.84147 0.90930
0.14112 -0.75680
@end group
@end example
@anchor{doc-atan2}
@deftypefn {Mapping Function} {} atan2 (@var{y}, @var{x})
Compute atan (@var{y} / @var{x}) for corresponding elements of @var{y}
and @var{x}. The result is in range -pi to pi.
@end deftypefn
@node Sums and Products
@section Sums and Products
@anchor{doc-sum}
@deftypefn {Built-in Function} {} sum (@var{x}, @var{dim})
Sum of elements along dimension @var{dim}. If @var{dim} is
omitted, it defaults to 1 (column-wise sum).
As a special case, if @var{x} is a vector and @var{dim} is omitted,
return the sum of the elements.
@end deftypefn
@anchor{doc-prod}
@deftypefn {Built-in Function} {} prod (@var{x}, @var{dim})
Product of elements along dimension @var{dim}. If @var{dim} is
omitted, it defaults to 1 (column-wise products).
As a special case, if @var{x} is a vector and @var{dim} is omitted,
return the product of the elements.
@end deftypefn
@anchor{doc-cumsum}
@deftypefn {Built-in Function} {} cumsum (@var{x}, @var{dim})
Cumulative sum of elements along dimension @var{dim}. If @var{dim}
is omitted, it defaults to 1 (column-wise cumulative sums).
As a special case, if @var{x} is a vector and @var{dim} is omitted,
return the cumulative sum of the elements as a vector with the
same orientation as @var{x}.
@end deftypefn
@anchor{doc-cumprod}
@deftypefn {Built-in Function} {} cumprod (@var{x}, @var{dim})
Cumulative product of elements along dimension @var{dim}. If
@var{dim} is omitted, it defaults to 1 (column-wise cumulative
products).
As a special case, if @var{x} is a vector and @var{dim} is omitted,
return the cumulative product of the elements as a vector with the
same orientation as @var{x}.
@end deftypefn
@anchor{doc-sumsq}
@deftypefn {Built-in Function} {} sumsq (@var{x}, @var{dim})
Sum of squares of elements along dimension @var{dim}. If @var{dim}
is omitted, it defaults to 1 (column-wise sum of squares).
As a special case, if @var{x} is a vector and @var{dim} is omitted,
return the sum of squares of the elements.
This function is conceptually equivalent to computing
@example
sum (x .* conj (x), dim)
@end example
but it uses less memory and avoids calling conj if @var{x} is real.
@end deftypefn
@node Special Functions
@section Special Functions
@anchor{doc-besselj}
@deftypefn {Loadable Function} {[@var{j}, @var{ierr}] =} besselj (@var{alpha}, @var{x}, @var{opt})
@deftypefnx {Loadable Function} {[@var{y}, @var{ierr}] =} bessely (@var{alpha}, @var{x}, @var{opt})
@deftypefnx {Loadable Function} {[@var{i}, @var{ierr}] =} besseli (@var{alpha}, @var{x}, @var{opt})
@deftypefnx {Loadable Function} {[@var{k}, @var{ierr}] =} besselk (@var{alpha}, @var{x}, @var{opt})
@deftypefnx {Loadable Function} {[@var{h}, @var{ierr}] =} besselh (@var{alpha}, @var{k}, @var{x}, @var{opt})
Compute Bessel or Hankel functions of various kinds:
@table @code
@item besselj
Bessel functions of the first kind.
@item bessely
Bessel functions of the second kind.
@item besseli
Modified Bessel functions of the first kind.
@item besselk
Modified Bessel functions of the second kind.
@item besselh
Compute Hankel functions of the first (@var{k} = 1) or second (@var{k}
= 2) kind.
@end table
If the argument @var{opt} is supplied, the result is scaled by the
@code{exp (-I*@var{x})} for @var{k} = 1 or @code{exp (I*@var{x})} for
@var{k} = 2.
If @var{alpha} is a scalar, the result is the same size as @var{x}.
If @var{x} is a scalar, the result is the same size as @var{alpha}.
If @var{alpha} is a row vector and @var{x} is a column vector, the
result is a matrix with @code{length (@var{x})} rows and
@code{length (@var{alpha})} columns. Otherwise, @var{alpha} and
@var{x} must conform and the result will be the same size.
The value of @var{alpha} must be real. The value of @var{x} may be
complex.
If requested, @var{ierr} contains the following status information
and is the same size as the result.
@enumerate 0
@item
Normal return.
@item
Input error, return @code{NaN}.
@item
Overflow, return @code{Inf}.
@item
Loss of significance by argument reduction results in less than
half of machine accuracy.
@item
Complete loss of significance by argument reduction, return @code{NaN}.
@item
Error---no computation, algorithm termination condition not met,
return @code{NaN}.
@end enumerate
@end deftypefn
@anchor{doc-airy}
@deftypefn {Loadable Function} {[@var{a}, @var{ierr}] =} airy (@var{k}, @var{z}, @var{opt})
Compute Airy functions of the first and second kind, and their
derivatives.
@example
K Function Scale factor (if a third argument is supplied)
--- -------- ----------------------------------------------
0 Ai (Z) exp ((2/3) * Z * sqrt (Z))
1 dAi(Z)/dZ exp ((2/3) * Z * sqrt (Z))
2 Bi (Z) exp (-abs (real ((2/3) * Z *sqrt (Z))))
3 dBi(Z)/dZ exp (-abs (real ((2/3) * Z *sqrt (Z))))
@end example
The function call @code{airy (@var{z})} is equivalent to
@code{airy (0, @var{z})}.
The result is the same size as @var{z}.
If requested, @var{ierr} contains the following status information and
is the same size as the result.
@enumerate 0
@item
Normal return.
@item
Input error, return @code{NaN}.
@item
Overflow, return @code{Inf}.
@item
Loss of significance by argument reduction results in less than half
of machine accuracy.
@item
Complete loss of significance by argument reduction, return @code{NaN}.
@item
Error---no computation, algorithm termination condition not met,
return @code{NaN}
@end enumerate
@end deftypefn
@anchor{doc-beta}
@deftypefn {Mapping Function} {} beta (@var{a}, @var{b})
Return the Beta function,
@iftex
@tex
$$
B (a, b) = {\Gamma (a) \Gamma (b) \over \Gamma (a + b)}.
$$
@end tex
@end iftex
@ifinfo
@example
beta (a, b) = gamma (a) * gamma (b) / gamma (a + b).
@end example
@end ifinfo
@end deftypefn
@anchor{doc-betainc}
@deftypefn {Mapping Function} {} betainc (@var{x}, @var{a}, @var{b})
Return the incomplete Beta function,
@iftex
@tex
$$
\beta (x, a, b) = B (a, b)^{-1} \int_0^x t^{(a-z)} (1-t)^{(b-1)} dt.
$$
@end tex
@end iftex
@ifinfo
@smallexample
x
/
betainc (x, a, b) = beta (a, b)^(-1) | t^(a-1) (1-t)^(b-1) dt.
/
t=0
@end smallexample
@end ifinfo
If x has more than one component, both @var{a} and @var{b} must be
scalars. If @var{x} is a scalar, @var{a} and @var{b} must be of
compatible dimensions.
@end deftypefn
@anchor{doc-bincoeff}
@deftypefn {Mapping Function} {} bincoeff (@var{n}, @var{k})
Return the binomial coefficient of @var{n} and @var{k}, defined as
@iftex
@tex
$$
{n \choose k} = {n (n-1) (n-2) \cdots (n-k+1) \over k!}
$$
@end tex
@end iftex
@ifinfo
@example
@group
/ \
| n | n (n-1) (n-2) ... (n-k+1)
| | = -------------------------
| k | k!
\ /
@end group
@end example
@end ifinfo
For example,
@example
@group
bincoeff (5, 2)
@result{} 10
@end group
@end example
@end deftypefn
@anchor{doc-erf}
@deftypefn {Mapping Function} {} erf (@var{z})
Computes the error function,
@iftex
@tex
$$
{\rm erf} (z) = {2 \over \sqrt{\pi}}\int_0^z e^{-t^2} dt
$$
@end tex
@end iftex
@ifinfo
@smallexample
z
/
erf (z) = (2/sqrt (pi)) | e^(-t^2) dt
/
t=0
@end smallexample
@end ifinfo
@end deftypefn
@seealso{erfc and erfinv}
@anchor{doc-erfc}
@deftypefn {Mapping Function} {} erfc (@var{z})
Computes the complementary error function,
@iftex
@tex
$1 - {\rm erf} (z)$.
@end tex
@end iftex
@ifinfo
@code{1 - erf (@var{z})}.
@end ifinfo
@end deftypefn
@seealso{erf and erfinv}
@anchor{doc-erfinv}
@deftypefn {Mapping Function} {} erfinv (@var{z})
Computes the inverse of the error function.
@end deftypefn
@seealso{erf and erfc}
@anchor{doc-gamma}
@deftypefn {Mapping Function} {} gamma (@var{z})
Computes the Gamma function,
@iftex
@tex
$$
\Gamma (z) = \int_0^\infty t^{z-1} e^{-t} dt.
$$
@end tex
@end iftex
@ifinfo
@example
infinity
/
gamma (z) = | t^(z-1) exp (-t) dt.
/
t=0
@end example
@end ifinfo
@end deftypefn
@seealso{gammai and lgamma}
@anchor{doc-gammainc}
@deftypefn {Mapping Function} {} gammainc (@var{x}, @var{a})
Computes the incomplete gamma function,
@iftex
@tex
$$
\gamma (x, a) = {\displaystyle\int_0^x e^{-t} t^{a-1} dt \over \Gamma (a)}
$$
@end tex
@end iftex
@ifinfo
@smallexample
x
1 /
gammainc (x, a) = --------- | exp (-t) t^(a-1) dt
gamma (a) /
t=0
@end smallexample
@end ifinfo
If @var{a} is scalar, then @code{gammainc (@var{x}, @var{a})} is returned
for each element of @var{x} and vice versa.
If neither @var{x} nor @var{a} is scalar, the sizes of @var{x} and
@var{a} must agree, and @var{gammainc} is applied element-by-element.
@end deftypefn
@seealso{gamma and lgamma}
@anchor{doc-lgamma}
@deftypefn {Mapping Function} {} lgamma (@var{a}, @var{x})
@deftypefnx {Mapping Function} {} gammaln (@var{a}, @var{x})
Return the natural logarithm of the gamma function.
@end deftypefn
@seealso{gamma and gammai}
@anchor{doc-cross}
@deftypefn {Function File} {} cross (@var{x}, @var{y}, @var{dim})
Computes the vector cross product of the two 3-dimensional vectors
@var{x} and @var{y}.
@example
@group
cross ([1,1,0], [0,1,1])
@result{} [ 1; -1; 1 ]
@end group
@end example
If @var{x} and @var{y} are matrices, the cross product is applied
along the first dimension with 3 elements. The optional argument
@var{dim} is used to force the cross product to be calculated along
the dimension defiend by @var{dim}.
@end deftypefn
@anchor{doc-commutation_matrix}
@deftypefn {Function File} {} commutation_matrix (@var{m}, @var{n})
Return the commutation matrix
@iftex
@tex
$K_{m,n}$
@end tex
@end iftex
@ifinfo
K(m,n)
@end ifinfo
which is the unique
@iftex
@tex
$m n \times m n$
@end tex
@end iftex
@ifinfo
@var{m}*@var{n} by @var{m}*@var{n}
@end ifinfo
matrix such that
@iftex
@tex
$K_{m,n} \cdot {\rm vec} (A) = {\rm vec} (A^T)$
@end tex
@end iftex
@ifinfo
@math{K(m,n) * vec(A) = vec(A')}
@end ifinfo
for all
@iftex
@tex
$m\times n$
@end tex
@end iftex
@ifinfo
@math{m} by @math{n}
@end ifinfo
matrices
@iftex
@tex
$A$.
@end tex
@end iftex
@ifinfo
@math{A}.
@end ifinfo
If only one argument @var{m} is given,
@iftex
@tex
$K_{m,m}$
@end tex
@end iftex
@ifinfo
@math{K(m,m)}
@end ifinfo
is returned.
See Magnus and Neudecker (1988), Matrix differential calculus with
applications in statistics and econometrics.
@end deftypefn
@anchor{doc-duplication_matrix}
@deftypefn {Function File} {} duplication_matrix (@var{n})
Return the duplication matrix
@iftex
@tex
$D_n$
@end tex
@end iftex
@ifinfo
@math{Dn}
@end ifinfo
which is the unique
@iftex
@tex
$n^2 \times n(n+1)/2$
@end tex
@end iftex
@ifinfo
@math{n^2} by @math{n*(n+1)/2}
@end ifinfo
matrix such that
@iftex
@tex
$D_n * {\rm vech} (A) = {\rm vec} (A)$
@end tex
@end iftex
@ifinfo
@math{Dn vech (A) = vec (A)}
@end ifinfo
for all symmetric
@iftex
@tex
$n \times n$
@end tex
@end iftex
@ifinfo
@math{n} by @math{n}
@end ifinfo
matrices
@iftex
@tex
$A$.
@end tex
@end iftex
@ifinfo
@math{A}.
@end ifinfo
See Magnus and Neudecker (1988), Matrix differential calculus with
applications in statistics and econometrics.
@end deftypefn
@node Coordinate Transformations
@section Coordinate Transformations
@anchor{doc-cart2pol}
@deftypefn {Function File} {} [@var{theta}, @var{r}] = cart2pol (@var{x}, @var{y})
@deftypefnx {Function File} {} [@var{theta}, @var{r}, @var{z}] = cart2pol (@var{x}, @var{y}, @var{z})
Transform cartesian to polar or cylindrical coordinates.
@var{x}, @var{y} (and @var{z}) must be of same shape.
@var{theta} describes the angle relative to the x - axis.
@var{r} is the distance to the z - axis (0, 0, z).
@end deftypefn
@seealso{pol2cart, cart2sph, sph2cart}
@anchor{doc-pol2cart}
@deftypefn {Function File} {} [@var{x}, @var{y}] = pol2cart (@var{theta}, @var{r})
@deftypefnx {Function File} {} [@var{x}, @var{y}, @var{z}] = pol2cart (@var{theta}, @var{r}, @var{z})
Transform polar or cylindrical to cartesian coordinates.
@var{theta}, @var{r} (and @var{z}) must be of same shape.
@var{theta} describes the angle relative to the x - axis.
@var{r} is the distance to the z - axis (0, 0, z).
@end deftypefn
@seealso{cart2pol, cart2sph, sph2cart}
@anchor{doc-cart2sph}
@deftypefn {Function File} {} [@var{theta}, @var{phi}, @var{r}] = cart2sph (@var{x}, @var{y}, @var{z})
Transform cartesian to spherical coordinates.
@var{x}, @var{y} and @var{z} must be of same shape.
@var{theta} describes the angle relative to the x - axis.
@var{phi} is the angle relative to the xy - plane.
@var{r} is the distance to the origin (0, 0, 0).
@end deftypefn
@seealso{pol2cart, cart2pol, sph2cart}
@anchor{doc-sph2cart}
@deftypefn {Function File} {} [@var{x}, @var{y}, @var{z}] = sph2cart (@var{theta}, @var{phi}, @var{r})
Transform spherical to cartesian coordinates.
@var{x}, @var{y} and @var{z} must be of same shape.
@var{theta} describes the angle relative to the x-axis.
@var{phi} is the angle relative to the xy-plane.
@var{r} is the distance to the origin (0, 0, 0).
@end deftypefn
@seealso{pol2cart, cart2pol, cart2sph}
@node Mathematical Constants
@section Mathematical Constants
@anchor{doc-I}
@defvr {Built-in Variable} I
@defvrx {Built-in Variable} J
@defvrx {Built-in Variable} i
@defvrx {Built-in Variable} j
A pure imaginary number, defined as
@iftex
@tex
$\sqrt{-1}$.
@end tex
@end iftex
@ifinfo
@code{sqrt (-1)}.
@end ifinfo
These built-in variables behave like functions so you can use the names
for other purposes. If you use them as variables and assign values to
them and then clear them, they once again assume their special predefined
values @xref{Status of Variables}.
@end defvr
@anchor{doc-Inf}
@defvr {Built-in Variable} Inf
@defvrx {Built-in Variable} inf
Infinity. This is the result of an operation like 1/0, or an operation
that results in a floating point overflow.
@end defvr
@anchor{doc-NaN}
@defvr {Built-in Variable} NaN
@defvrx {Built-in Variable} nan
Not a number. This is the result of an operation like
@iftex
@tex
$0/0$, or $\infty - \infty$,
@end tex
@end iftex
@ifinfo
0/0, or @samp{Inf - Inf},
@end ifinfo
or any operation with a NaN.
Note that NaN always compares not equal to NaN. This behavior is
specified by the IEEE standard for floating point arithmetic. To
find NaN values, you must use the @code{isnan} function.
@end defvr
@anchor{doc-pi}
@defvr {Built-in Variable} pi
The ratio of the circumference of a circle to its diameter.
Internally, @code{pi} is computed as @samp{4.0 * atan (1.0)}.
@end defvr
@anchor{doc-e}
@defvr {Built-in Variable} e
The base of natural logarithms. The constant
@iftex
@tex
$e$
@end tex
@end iftex
@ifinfo
@var{e}
@end ifinfo
satisfies the equation
@iftex
@tex
$\log (e) = 1$.
@end tex
@end iftex
@ifinfo
@code{log} (@var{e}) = 1.
@end ifinfo
@end defvr
@anchor{doc-eps}
@defvr {Built-in Variable} eps
The machine precision. More precisely, @code{eps} is the largest
relative spacing between any two adjacent numbers in the machine's
floating point system. This number is obviously system-dependent. On
machines that support 64 bit IEEE floating point arithmetic, @code{eps}
is approximately
@ifinfo
2.2204e-16.
@end ifinfo
@iftex
@tex
$2.2204\times10^{-16}$.
@end tex
@end iftex
@end defvr
@anchor{doc-realmax}
@defvr {Built-in Variable} realmax
The largest floating point number that is representable. The actual
value is system-dependent. On machines that support 64-bit IEEE
floating point arithmetic, @code{realmax} is approximately
@ifinfo
1.7977e+308
@end ifinfo
@iftex
@tex
$1.7977\times10^{308}$.
@end tex
@end iftex
@end defvr
@anchor{doc-realmin}
@defvr {Built-in Variable} realmin
The smallest normalized floating point number that is representable.
The actual value is system-dependent. On machines that support
64-bit IEEE floating point arithmetic, @code{realmin} is approximately
@ifinfo
2.2251e-308
@end ifinfo
@iftex
@tex
$2.2251\times10^{-308}$.
@end tex
@end iftex
@end defvr
|