File: arith.texi

package info (click to toggle)
octave2.1 1%3A2.1.73-13
  • links: PTS
  • area: main
  • in suites: etch, etch-m68k
  • size: 37,028 kB
  • ctags: 20,874
  • sloc: cpp: 106,508; fortran: 46,978; ansic: 5,720; sh: 4,800; makefile: 3,186; yacc: 3,132; lex: 2,892; lisp: 1,715; perl: 778; awk: 174; exp: 134
file content (1295 lines) | stat: -rw-r--r-- 30,687 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
@c DO NOT EDIT!  Generated automatically by munge-texi.

@c Copyright (C) 1996, 1997 John W. Eaton
@c This is part of the Octave manual.
@c For copying conditions, see the file gpl.texi.

@node Arithmetic
@chapter Arithmetic

Unless otherwise noted, all of the functions described in this chapter
will work for real and complex scalar or matrix arguments.

@menu
* Utility Functions::           
* Complex Arithmetic::          
* Trigonometry::                
* Sums and Products::           
* Special Functions::           
* Coordinate Transformations::
* Mathematical Constants::      
@end menu

@node Utility Functions
@section Utility Functions

The following functions are available for working with complex numbers.
Each expects a single argument.  They are called @dfn{mapping functions}
because when given a matrix argument, they apply the given function to
each element of the matrix.

@anchor{doc-ceil}
@deftypefn {Mapping Function} {} ceil (@var{x})
Return the smallest integer not less than @var{x}.  If @var{x} is
complex, return @code{ceil (real (@var{x})) + ceil (imag (@var{x})) * I}.
@end deftypefn


@anchor{doc-exp}
@deftypefn {Mapping Function} {} exp (@var{x})
Compute the exponential of @var{x}.  To compute the matrix exponential,
see @ref{Linear Algebra}.
@end deftypefn


@anchor{doc-fix}
@deftypefn {Mapping Function} {} fix (@var{x})
Truncate @var{x} toward zero.  If @var{x} is complex, return
@code{fix (real (@var{x})) + fix (imag (@var{x})) * I}.
@end deftypefn


@anchor{doc-floor}
@deftypefn {Mapping Function} {} floor (@var{x})
Return the largest integer not greater than @var{x}.  If @var{x} is
complex, return @code{floor (real (@var{x})) + floor (imag (@var{x})) * I}.
@end deftypefn


@anchor{doc-gcd}
@deftypefn {Loadable Function} {@var{g} =} gcd (@var{a1}, @code{...})
@deftypefnx {Loadable Function} {[@var{g}, @var{v1}, @var{...}] =} gcd (@var{a1}, @code{...})

If a single argument is given then compute the greatest common divisor of
the elements of this argument. Otherwise if more than one argument is
given all arguments must be the same size or scalar. In this case the
greatest common divisor is calculated for element individually. All
elements must be integers. For example,

@example
@group
gcd ([15, 20])
    @result{}  5
@end group
@end example

@noindent
and

@example
@group
gcd ([15, 9], [20 18])
    @result{}  5  9
@end group
@end example

Optional return arguments @var{v1}, etc, contain integer vectors such
that,

@ifinfo
@example
@var{g} = @var{v1} .* @var{a1} + @var{v2} .* @var{a2} + @var{...}
@end example
@end ifinfo
@iftex
@tex
$g = v_1 a_1 + v_2 a_2 + \cdots$
@end tex
@end iftex

For backward compatiability with previous versions of this function, when
all arguments are scalr, a single return argument @var{v1} containing
all of the values of @var{v1}, @var{...} is acceptable.
@end deftypefn
@seealso{lcm, min, max, ceil, and floor}


@anchor{doc-lcm}
@deftypefn {Mapping Function} {} lcm (@var{x}, @code{...})
Compute the least common multiple of the elements elements of @var{x}, or
the list of all the arguments.  For example,

@example
lcm (a1, ..., ak)
@end example

@noindent
is the same as

@example
lcm ([a1, ..., ak]).
@end example

All elements must be the same size or scalar.
@end deftypefn

@seealso{gcd, min, max, ceil, and floor}


@anchor{doc-log}
@deftypefn {Mapping Function} {} log (@var{x})
Compute the natural logarithm for each element of @var{x}.  To compute the
matrix logarithm, see @ref{Linear Algebra}.
@end deftypefn
@seealso{log2, log10, logspace, and exp}


@anchor{doc-log10}
@deftypefn {Mapping Function} {} log10 (@var{x})
Compute the base-10 logarithm for each element of @var{x}.
@end deftypefn
@seealso{log, log2, logspace, and exp}


@anchor{doc-log2}
@deftypefn {Mapping Function} {} log2 (@var{x})
@deftypefnx {Mapping Function} {[@var{f}, @var{e}] =} log2 (@var{x})
Compute the base-2 logarithm of @var{x}.  With two outputs, returns
@var{f} and @var{e} such that
@iftex
@tex
 $1/2 <= |f| < 1$ and $x = f \cdot 2^e$.
@end tex
@end iftex
@ifinfo
 1/2 <= abs(f) < 1 and x = f * 2^e.
@end ifinfo
@end deftypefn

@seealso{log, log10, logspace, and exp}


@anchor{doc-max}
@deftypefn {Mapping Function} {} max (@var{x}, @var{y}, @var{dim})
@deftypefnx {Mapping Function} {[@var{w}, @var{iw}] =} max (@var{x})
@cindex Utility Functions
For a vector argument, return the maximum value.  For a matrix
argument, return the maximum value from each column, as a row
vector, or over the dimension @var{dim} if defined. For two matrices
(or a matrix and scalar), return the pair-wise maximum.
Thus,

@example
max (max (@var{x}))
@end example

@noindent
returns the largest element of @var{x}, and

@example
@group
max (2:5, pi)
    @result{}  3.1416  3.1416  4.0000  5.0000
@end group
@end example
@noindent
compares each element of the range @code{2:5} with @code{pi}, and
returns a row vector of the maximum values.

For complex arguments, the magnitude of the elements are used for
comparison.

If called with one input and two output arguments,
@code{max} also returns the first index of the
maximum value(s). Thus,

@example
@group
[x, ix] = max ([1, 3, 5, 2, 5])
    @result{}  x = 5
        ix = 3
@end group
@end example
@end deftypefn


@anchor{doc-min}
@deftypefn {Mapping Function} {} min (@var{x}, @var{y}, @var{dim})
@deftypefnx {Mapping Function} {[@var{w}, @var{iw}] =} min (@var{x})
@cindex Utility Functions
For a vector argument, return the minimum value.  For a matrix
argument, return the minimum value from each column, as a row
vector, or over the dimension @var{dim} if defined. For two matrices
(or a matrix and scalar), return the pair-wise minimum.
Thus,

@example
min (min (@var{x}))
@end example

@noindent
returns the smallest element of @var{x}, and

@example
@group
min (2:5, pi)
    @result{}  2.0000  3.0000  3.1416  3.1416
@end group
@end example
@noindent
compares each element of the range @code{2:5} with @code{pi}, and
returns a row vector of the minimum values.

For complex arguments, the magnitude of the elements are used for
comparison.

If called with one input and two output arguments,
@code{min} also returns the first index of the
minimum value(s). Thus,

@example
@group
[x, ix] = min ([1, 3, 0, 2, 5])
    @result{}  x = 0
        ix = 3
@end group
@end example
@end deftypefn


@anchor{doc-mod}
@deftypefn {Mapping Function} {} mod (@var{x}, @var{y})
Compute modulo function, using

@example
x - y .* floor (x ./ y)
@end example

Note that this handles negative numbers correctly:
@code{mod (-1, 3)} is 2, not -1 as @code{rem (-1, 3)} returns.
Also, @code{mod (@var{x}, 0)} returns @var{x}.

An error message is printed if the dimensions of the arguments do not
agree, or if either of the arguments is complex.
@end deftypefn

@seealso{rem, round}


@anchor{doc-nextpow2}
@deftypefn {Function File} {} nextpow2 (@var{x})
If @var{x} is a scalar, returns the first integer @var{n} such that
@iftex
@tex
 $2^n \ge |x|$.
@end tex
@end iftex
@ifinfo
 2^n >= abs (x).
@end ifinfo

If @var{x} is a vector, return @code{nextpow2 (length (@var{x}))}.
@end deftypefn

@seealso{pow2}


@anchor{doc-pow2}
@deftypefn {Mapping Function} {} pow2 (@var{x})
@deftypefnx {Mapping Function} {} pow2 (@var{f}, @var{e})
With one argument, computes
@iftex
@tex
 $2^x$
@end tex
@end iftex
@ifinfo
 2 .^ x
@end ifinfo
for each element of @var{x}.  With two arguments, returns
@iftex
@tex
 $f \cdot 2^e$.
@end tex
@end iftex
@ifinfo
 f .* (2 .^ e).
@end ifinfo
@end deftypefn

@seealso{nextpow2}


@anchor{doc-rem}
@deftypefn {Mapping Function} {} rem (@var{x}, @var{y})
Return the remainder of @code{@var{x} / @var{y}}, computed using the
expression

@example
x - y .* fix (x ./ y)
@end example

An error message is printed if the dimensions of the arguments do not
agree, or if either of the arguments is complex.
@end deftypefn

@seealso{mod, round}


@anchor{doc-round}
@deftypefn {Mapping Function} {} round (@var{x})
Return the integer nearest to @var{x}.  If @var{x} is complex, return
@code{round (real (@var{x})) + round (imag (@var{x})) * I}.
@end deftypefn
@seealso{rem}


@anchor{doc-sign}
@deftypefn {Mapping Function} {} sign (@var{x})
Compute the @dfn{signum} function, which is defined as
@iftex
@tex
$$
{\rm sign} (@var{x}) = \cases{1,&$x>0$;\cr 0,&$x=0$;\cr -1,&$x<0$.\cr}
$$
@end tex
@end iftex
@ifinfo

@example
           -1, x < 0;
sign (x) =  0, x = 0;
            1, x > 0.
@end example
@end ifinfo

For complex arguments, @code{sign} returns @code{x ./ abs (@var{x})}.
@end deftypefn


@anchor{doc-sqrt}
@deftypefn {Mapping Function} {} sqrt (@var{x})
Compute the square root of @var{x}.  If @var{x} is negative, a complex
result is returned.  To compute the matrix square root, see
@ref{Linear Algebra}.
@end deftypefn


@node Complex Arithmetic
@section Complex Arithmetic

The following functions are available for working with complex
numbers.  Each expects a single argument.  Given a matrix they work on
an element by element basis.  In the descriptions of the following
functions,
@iftex
@tex
$z$ is the complex number $x + iy$, where $i$ is defined as
$\sqrt{-1}$.
@end tex
@end iftex
@ifinfo
@var{z} is the complex number @var{x} + @var{i}@var{y}, where @var{i} is
defined as @code{sqrt (-1)}.
@end ifinfo

@anchor{doc-abs}
@deftypefn {Mapping Function} {} abs (@var{z})
Compute the magnitude of @var{z}, defined as
@iftex
@tex
$|z| = \sqrt{x^2 + y^2}$.
@end tex
@end iftex
@ifinfo
|@var{z}| = @code{sqrt (x^2 + y^2)}.
@end ifinfo

For example,

@example
@group
abs (3 + 4i)
     @result{} 5
@end group
@end example
@end deftypefn


@anchor{doc-arg}
@deftypefn {Mapping Function} {} arg (@var{z})
@deftypefnx {Mapping Function} {} angle (@var{z})
Compute the argument of @var{z}, defined as
@iftex
@tex
$\theta = \tan^{-1}(y/x)$.
@end tex
@end iftex
@ifinfo
@var{theta} = @code{atan (@var{y}/@var{x})}.
@end ifinfo
@noindent
in radians. 

For example,

@example
@group
arg (3 + 4i)
     @result{} 0.92730
@end group
@end example
@end deftypefn


@anchor{doc-conj}
@deftypefn {Mapping Function} {} conj (@var{z})
Return the complex conjugate of @var{z}, defined as
@iftex
@tex
$\bar{z} = x - iy$.
@end tex
@end iftex
@ifinfo
@code{conj (@var{z})} = @var{x} - @var{i}@var{y}.
@end ifinfo
@end deftypefn
@seealso{real and imag}


@anchor{doc-imag}
@deftypefn {Mapping Function} {} imag (@var{z})
Return the imaginary part of @var{z} as a real number.
@end deftypefn

@seealso{real and conj}


@anchor{doc-real}
@deftypefn {Mapping Function} {} real (@var{z})
Return the real part of @var{z}.
@end deftypefn
@seealso{imag and conj}


@node Trigonometry
@section Trigonometry

Octave provides the following trigonometric functions.  Angles are
specified in radians.  To convert from degrees to radians multipy by
@iftex
@tex
$\pi/180$
@end tex
@end iftex
@ifinfo
@code{pi/180}
@end ifinfo
 (e.g. @code{sin (30 * pi/180)} returns the sine of 30 degrees).

@anchor{doc-sin}
@deftypefn {Mapping Function} {} sin (@var{x})
Compute the sine of each element of @var{x}.
@end deftypefn

@anchor{doc-cos}
@deftypefn {Mapping Function} {} cos (@var{x})
Compute the cosine of each element of @var{x}.
@end deftypefn

@anchor{doc-tan}
@deftypefn {Mapping Function} {} tan (@var{z})
Compute tangent of each element of @var{x}.
@end deftypefn

@anchor{doc-sec}
@deftypefn {Mapping Function} {} sec (@var{x})
Compute the secant of each element of @var{x}.
@end deftypefn

@anchor{doc-csc}
@deftypefn {Mapping Function} {} csc (@var{x})
Compute the cosecant of each element of @var{x}.
@end deftypefn

@anchor{doc-cot}
@deftypefn {Mapping Function} {} cot (@var{x})
Compute the cotangent of each element of @var{x}.
@end deftypefn


@anchor{doc-asin}
@deftypefn {Mapping Function} {} asin (@var{x})
Compute the inverse sine of each element of @var{x}.
@end deftypefn

@anchor{doc-acos}
@deftypefn {Mapping Function} {} acos (@var{x})
Compute the inverse cosine of each element of @var{x}.
@end deftypefn

@anchor{doc-atan}
@deftypefn {Mapping Function} {} atan (@var{x})
Compute the inverse tangent of each element of @var{x}.
@end deftypefn

@anchor{doc-asec}
@deftypefn {Mapping Function} {} asec (@var{x})
Compute the inverse secant of each element of @var{x}.
@end deftypefn

@anchor{doc-acsc}
@deftypefn {Mapping Function} {} acsc (@var{x})
Compute the inverse cosecant of each element of @var{x}.
@end deftypefn

@anchor{doc-acot}
@deftypefn {Mapping Function} {} acot (@var{x})
Compute the inverse cotangent of each element of @var{x}.
@end deftypefn


@anchor{doc-sinh}
@deftypefn {Mapping Function} {} sinh (@var{x})
Compute the inverse hyperbolic sine of each element of @var{x}.
@end deftypefn

@anchor{doc-cosh}
@deftypefn {Mapping Function} {} cosh (@var{x})
Compute the hyperbolic cosine of each element of @var{x}.
@end deftypefn

@anchor{doc-tanh}
@deftypefn {Mapping Function} {} tanh (@var{x})
Compute hyperbolic tangent of each element of @var{x}.
@end deftypefn

@anchor{doc-sech}
@deftypefn {Mapping Function} {} sech (@var{x})
Compute the hyperbolic secant of each element of @var{x}.
@end deftypefn

@anchor{doc-csch}
@deftypefn {Mapping Function} {} csch (@var{x})
Compute the hyperbolic cosecant of each element of @var{x}.
@end deftypefn

@anchor{doc-coth}
@deftypefn {Mapping Function} {} coth (@var{x})
Compute the hyperbolic cotangent of each element of @var{x}.
@end deftypefn


@anchor{doc-asinh}
@deftypefn {Mapping Function} {} asinh (@var{x})
Compute the inverse hyperbolic sine of each element of @var{x}.
@end deftypefn

@anchor{doc-acosh}
@deftypefn {Mapping Function} {} acosh (@var{x})
Compute the inverse hyperbolic cosine of each element of @var{x}.
@end deftypefn

@anchor{doc-atanh}
@deftypefn {Mapping Function} {} atanh (@var{x})
Compute the inverse hyperbolic tangent of each element of @var{x}.
@end deftypefn

@anchor{doc-asech}
@deftypefn {Mapping Function} {} asech (@var{x})
Compute the inverse hyperbolic secant of each element of @var{x}.
@end deftypefn

@anchor{doc-acsch}
@deftypefn {Mapping Function} {} acsch (@var{x})
Compute the inverse hyperbolic cosecant of each element of @var{x}.
@end deftypefn

@anchor{doc-acoth}
@deftypefn {Mapping Function} {} acoth (@var{x})
Compute the inverse hyperbolic cotangent of each element of @var{x}.
@end deftypefn


Each of these functions expect a single argument.  For matrix arguments,
they work on an element by element basis.  For example,

@example
@group
sin ([1, 2; 3, 4])
     @result{}  0.84147   0.90930
         0.14112  -0.75680
@end group
@end example

@anchor{doc-atan2}
@deftypefn {Mapping Function} {} atan2 (@var{y}, @var{x})
Compute atan (@var{y} / @var{x}) for corresponding elements of @var{y}
and @var{x}.  The result is in range -pi to pi.
@end deftypefn



@node Sums and Products
@section Sums and Products

@anchor{doc-sum}
@deftypefn {Built-in Function} {} sum (@var{x}, @var{dim})
Sum of elements along dimension @var{dim}.  If @var{dim} is
omitted, it defaults to 1 (column-wise sum).

As a special case, if @var{x} is a vector and @var{dim} is omitted,
return the sum of the elements.
@end deftypefn


@anchor{doc-prod}
@deftypefn {Built-in Function} {} prod (@var{x}, @var{dim})
Product of elements along dimension @var{dim}.  If @var{dim} is
omitted, it defaults to 1 (column-wise products).

As a special case, if @var{x} is a vector and @var{dim} is omitted,
return the product of the elements.
@end deftypefn


@anchor{doc-cumsum}
@deftypefn {Built-in Function} {} cumsum (@var{x}, @var{dim})
Cumulative sum of elements along dimension @var{dim}.  If @var{dim}
is omitted, it defaults to 1 (column-wise cumulative sums).

As a special case, if @var{x} is a vector and @var{dim} is omitted,
return the cumulative sum of the elements as a vector with the
same orientation as @var{x}.
@end deftypefn


@anchor{doc-cumprod}
@deftypefn {Built-in Function} {} cumprod (@var{x}, @var{dim})
Cumulative product of elements along dimension @var{dim}.  If
@var{dim} is omitted, it defaults to 1 (column-wise cumulative
products).

As a special case, if @var{x} is a vector and @var{dim} is omitted,
return the cumulative product of the elements as a vector with the
same orientation as @var{x}.
@end deftypefn


@anchor{doc-sumsq}
@deftypefn {Built-in Function} {} sumsq (@var{x}, @var{dim})
Sum of squares of elements along dimension @var{dim}.  If @var{dim}
is omitted, it defaults to 1 (column-wise sum of squares).

As a special case, if @var{x} is a vector and @var{dim} is omitted,
return the sum of squares of the elements.

This function is conceptually equivalent to computing
@example
sum (x .* conj (x), dim)
@end example
but it uses less memory and avoids calling conj if @var{x} is real.
@end deftypefn


@node Special Functions
@section Special Functions

@anchor{doc-besselj}
@deftypefn {Loadable Function} {[@var{j}, @var{ierr}] =} besselj (@var{alpha}, @var{x}, @var{opt})
@deftypefnx {Loadable Function} {[@var{y}, @var{ierr}] =} bessely (@var{alpha}, @var{x}, @var{opt})
@deftypefnx {Loadable Function} {[@var{i}, @var{ierr}] =} besseli (@var{alpha}, @var{x}, @var{opt})
@deftypefnx {Loadable Function} {[@var{k}, @var{ierr}] =} besselk (@var{alpha}, @var{x}, @var{opt})
@deftypefnx {Loadable Function} {[@var{h}, @var{ierr}] =} besselh (@var{alpha}, @var{k}, @var{x}, @var{opt})
Compute Bessel or Hankel functions of various kinds:

@table @code
@item besselj
Bessel functions of the first kind.
@item bessely
Bessel functions of the second kind.
@item besseli
Modified Bessel functions of the first kind.
@item besselk
Modified Bessel functions of the second kind.
@item besselh
Compute Hankel functions of the first (@var{k} = 1) or second (@var{k}
 = 2) kind.
@end table

If the argument @var{opt} is supplied, the result is scaled by the
@code{exp (-I*@var{x})} for @var{k} = 1 or @code{exp (I*@var{x})} for
 @var{k} = 2.

If @var{alpha} is a scalar, the result is the same size as @var{x}.
If @var{x} is a scalar, the result is the same size as @var{alpha}.
If @var{alpha} is a row vector and @var{x} is a column vector, the
result is a matrix with @code{length (@var{x})} rows and
@code{length (@var{alpha})} columns.  Otherwise, @var{alpha} and
@var{x} must conform and the result will be the same size.

The value of @var{alpha} must be real.  The value of @var{x} may be
complex.

If requested, @var{ierr} contains the following status information
and is the same size as the result.

@enumerate 0
@item
Normal return.
@item
Input error, return @code{NaN}.
@item
Overflow, return @code{Inf}.
@item
Loss of significance by argument reduction results in less than
half of machine accuracy.
@item
Complete loss of significance by argument reduction, return @code{NaN}.
@item
Error---no computation, algorithm termination condition not met,
return @code{NaN}.
@end enumerate
@end deftypefn


@anchor{doc-airy}
@deftypefn {Loadable Function} {[@var{a}, @var{ierr}] =} airy (@var{k}, @var{z}, @var{opt})
Compute Airy functions of the first and second kind, and their
derivatives.

@example
  K   Function   Scale factor (if a third argument is supplied)
 ---  --------   ----------------------------------------------
  0   Ai (Z)     exp ((2/3) * Z * sqrt (Z))
  1   dAi(Z)/dZ  exp ((2/3) * Z * sqrt (Z))
  2   Bi (Z)     exp (-abs (real ((2/3) * Z *sqrt (Z))))
  3   dBi(Z)/dZ  exp (-abs (real ((2/3) * Z *sqrt (Z))))
@end example

The function call @code{airy (@var{z})} is equivalent to
@code{airy (0, @var{z})}.

The result is the same size as @var{z}.

If requested, @var{ierr} contains the following status information and
is the same size as the result.

@enumerate 0
@item
Normal return.
@item
Input error, return @code{NaN}.
@item
Overflow, return @code{Inf}.
@item
Loss of significance by argument reduction results in less than half
 of machine accuracy.
@item
Complete loss of significance by argument reduction, return @code{NaN}.
@item
Error---no computation, algorithm termination condition not met,
return @code{NaN}
@end enumerate
@end deftypefn


@anchor{doc-beta}
@deftypefn {Mapping Function} {} beta (@var{a}, @var{b})
Return the Beta function,
@iftex
@tex
$$
 B (a, b) = {\Gamma (a) \Gamma (b) \over \Gamma (a + b)}.
$$
@end tex
@end iftex
@ifinfo

@example
beta (a, b) = gamma (a) * gamma (b) / gamma (a + b).
@end example
@end ifinfo
@end deftypefn


@anchor{doc-betainc}
@deftypefn {Mapping Function} {} betainc (@var{x}, @var{a}, @var{b})
Return the incomplete Beta function,
@iftex
@tex
$$
 \beta (x, a, b) = B (a, b)^{-1} \int_0^x t^{(a-z)} (1-t)^{(b-1)} dt.
$$
@end tex
@end iftex
@ifinfo

@smallexample
                                      x
                                     /
betainc (x, a, b) = beta (a, b)^(-1) | t^(a-1) (1-t)^(b-1) dt.
                                     /
                                  t=0
@end smallexample
@end ifinfo

If x has more than one component, both @var{a} and @var{b} must be
scalars.  If @var{x} is a scalar, @var{a} and @var{b} must be of
compatible dimensions.
@end deftypefn


@anchor{doc-bincoeff}
@deftypefn {Mapping Function} {} bincoeff (@var{n}, @var{k})
Return the binomial coefficient of @var{n} and @var{k}, defined as
@iftex
@tex
$$
 {n \choose k} = {n (n-1) (n-2) \cdots (n-k+1) \over k!}
$$
@end tex
@end iftex
@ifinfo

@example
@group
 /   \
 | n |    n (n-1) (n-2) ... (n-k+1)
 |   |  = -------------------------
 | k |               k!
 \   /
@end group
@end example
@end ifinfo

For example,

@example
@group
bincoeff (5, 2)
@result{} 10
@end group
@end example
@end deftypefn


@anchor{doc-erf}
@deftypefn {Mapping Function} {} erf (@var{z})
Computes the error function,
@iftex
@tex
$$
 {\rm erf} (z) = {2 \over \sqrt{\pi}}\int_0^z e^{-t^2} dt
$$
@end tex
@end iftex
@ifinfo

@smallexample
                         z
                        /
erf (z) = (2/sqrt (pi)) | e^(-t^2) dt
                        /
                     t=0
@end smallexample
@end ifinfo
@end deftypefn
@seealso{erfc and erfinv}


@anchor{doc-erfc}
@deftypefn {Mapping Function} {} erfc (@var{z})
Computes the complementary error function,
@iftex
@tex
$1 - {\rm erf} (z)$.
@end tex
@end iftex
@ifinfo
@code{1 - erf (@var{z})}.
@end ifinfo
@end deftypefn

@seealso{erf and erfinv}


@anchor{doc-erfinv}
@deftypefn {Mapping Function} {} erfinv (@var{z})
Computes the inverse of the error function.
@end deftypefn

@seealso{erf and erfc}


@anchor{doc-gamma}
@deftypefn {Mapping Function} {} gamma (@var{z})
Computes the Gamma function,
@iftex
@tex
$$
 \Gamma (z) = \int_0^\infty t^{z-1} e^{-t} dt.
$$
@end tex
@end iftex
@ifinfo

@example
            infinity
            /
gamma (z) = | t^(z-1) exp (-t) dt.
            /
         t=0
@end example
@end ifinfo
@end deftypefn

@seealso{gammai and lgamma}


@anchor{doc-gammainc}
@deftypefn {Mapping Function} {} gammainc (@var{x}, @var{a})
Computes the incomplete gamma function,
@iftex
@tex
$$
 \gamma (x, a) = {\displaystyle\int_0^x e^{-t} t^{a-1} dt \over \Gamma (a)}
$$
@end tex
@end iftex
@ifinfo

@smallexample
                                x
                      1        /
gammainc (x, a) = ---------    | exp (-t) t^(a-1) dt
                  gamma (a)    /
                            t=0
@end smallexample
@end ifinfo

If @var{a} is scalar, then @code{gammainc (@var{x}, @var{a})} is returned
for each element of @var{x} and vice versa.

If neither @var{x} nor @var{a} is scalar, the sizes of @var{x} and
@var{a} must agree, and @var{gammainc} is applied element-by-element.
@end deftypefn
@seealso{gamma and lgamma}


@anchor{doc-lgamma}
@deftypefn {Mapping Function} {} lgamma (@var{a}, @var{x})
@deftypefnx {Mapping Function} {} gammaln (@var{a}, @var{x})
Return the natural logarithm of the gamma function.
@end deftypefn
@seealso{gamma and gammai}


@anchor{doc-cross}
@deftypefn {Function File} {} cross (@var{x}, @var{y}, @var{dim})
Computes the vector cross product of the two 3-dimensional vectors
@var{x} and @var{y}.

@example
@group
cross ([1,1,0], [0,1,1])
@result{} [ 1; -1; 1 ]
@end group
@end example

If @var{x} and @var{y} are matrices, the cross product is applied 
along the first dimension with 3 elements. The optional argument 
@var{dim} is used to force the cross product to be calculated along
the dimension defiend by @var{dim}.
@end deftypefn


@anchor{doc-commutation_matrix}
@deftypefn {Function File} {} commutation_matrix (@var{m}, @var{n})
Return the commutation matrix
@iftex
@tex
 $K_{m,n}$
@end tex
@end iftex
@ifinfo
 K(m,n)
@end ifinfo
 which is the unique
@iftex
@tex
 $m n \times m n$
@end tex
@end iftex
@ifinfo
@var{m}*@var{n} by @var{m}*@var{n}
@end ifinfo
 matrix such that
@iftex
@tex
 $K_{m,n} \cdot {\rm vec} (A) = {\rm vec} (A^T)$
@end tex
@end iftex
@ifinfo
@math{K(m,n) * vec(A) = vec(A')}
@end ifinfo
 for all
@iftex
@tex
 $m\times n$
@end tex
@end iftex
@ifinfo
@math{m} by @math{n}
@end ifinfo
 matrices
@iftex
@tex
 $A$.
@end tex
@end iftex
@ifinfo
@math{A}.
@end ifinfo

If only one argument @var{m} is given,
@iftex
@tex
 $K_{m,m}$
@end tex
@end iftex
@ifinfo
@math{K(m,m)}
@end ifinfo
 is returned.

See Magnus and Neudecker (1988), Matrix differential calculus with
applications in statistics and econometrics.
@end deftypefn


@anchor{doc-duplication_matrix}
@deftypefn {Function File} {} duplication_matrix (@var{n})
Return the duplication matrix
@iftex
@tex
 $D_n$
@end tex
@end iftex
@ifinfo
@math{Dn}
@end ifinfo
 which is the unique
@iftex
@tex
 $n^2 \times n(n+1)/2$
@end tex
@end iftex
@ifinfo
@math{n^2} by @math{n*(n+1)/2}
@end ifinfo
 matrix such that
@iftex
@tex
 $D_n * {\rm vech} (A) = {\rm vec} (A)$
@end tex
@end iftex
@ifinfo
@math{Dn vech (A) = vec (A)}
@end ifinfo
 for all symmetric
@iftex
@tex
 $n \times n$
@end tex
@end iftex
@ifinfo
@math{n} by @math{n}
@end ifinfo
 matrices
@iftex
@tex
 $A$.
@end tex
@end iftex
@ifinfo
@math{A}.
@end ifinfo

See Magnus and Neudecker (1988), Matrix differential calculus with
applications in statistics and econometrics.
@end deftypefn


@node Coordinate Transformations
@section Coordinate Transformations

@anchor{doc-cart2pol}
@deftypefn {Function File} {} [@var{theta}, @var{r}] = cart2pol (@var{x}, @var{y})
@deftypefnx {Function File} {} [@var{theta}, @var{r}, @var{z}] = cart2pol (@var{x}, @var{y}, @var{z})
Transform cartesian to polar or cylindrical coordinates.
@var{x}, @var{y} (and @var{z}) must be of same shape.
@var{theta} describes the angle relative to the x - axis.
@var{r} is the distance to the z - axis (0, 0, z).
@end deftypefn

@seealso{pol2cart, cart2sph, sph2cart}


@anchor{doc-pol2cart}
@deftypefn {Function File} {} [@var{x}, @var{y}] = pol2cart (@var{theta}, @var{r})
@deftypefnx {Function File} {} [@var{x}, @var{y}, @var{z}] = pol2cart (@var{theta}, @var{r}, @var{z})
Transform polar or cylindrical to cartesian coordinates.
@var{theta}, @var{r} (and @var{z}) must be of same shape.
@var{theta} describes the angle relative to the x - axis.
@var{r} is the distance to the z - axis (0, 0, z).
@end deftypefn

@seealso{cart2pol, cart2sph, sph2cart}


@anchor{doc-cart2sph}
@deftypefn {Function File} {} [@var{theta}, @var{phi}, @var{r}] = cart2sph (@var{x}, @var{y}, @var{z})
Transform cartesian to spherical coordinates.
@var{x}, @var{y} and @var{z} must be of same shape.
@var{theta} describes the angle relative to the x - axis.
@var{phi} is the angle relative to the xy - plane.
@var{r} is the distance to the origin (0, 0, 0).
@end deftypefn

@seealso{pol2cart, cart2pol, sph2cart}


@anchor{doc-sph2cart}
@deftypefn {Function File} {} [@var{x}, @var{y}, @var{z}] = sph2cart (@var{theta}, @var{phi}, @var{r})
Transform spherical to cartesian coordinates.
@var{x}, @var{y} and @var{z} must be of same shape.
@var{theta} describes the angle relative to the x-axis.
@var{phi} is the angle relative to the xy-plane.
@var{r} is the distance to the origin (0, 0, 0).
@end deftypefn

@seealso{pol2cart, cart2pol, cart2sph}


@node Mathematical Constants
@section Mathematical Constants

@anchor{doc-I}
@defvr {Built-in Variable} I
@defvrx {Built-in Variable} J
@defvrx {Built-in Variable} i
@defvrx {Built-in Variable} j
A pure imaginary number, defined as
@iftex
@tex
  $\sqrt{-1}$.
@end tex
@end iftex
@ifinfo
  @code{sqrt (-1)}.
@end ifinfo
These built-in variables behave like functions so you can use the names
for other purposes.  If you use them as variables and assign values to
them and then clear them, they once again assume their special predefined
values @xref{Status of Variables}.
@end defvr


@anchor{doc-Inf}
@defvr {Built-in Variable} Inf
@defvrx {Built-in Variable} inf
Infinity.  This is the result of an operation like 1/0, or an operation
that results in a floating point overflow.
@end defvr


@anchor{doc-NaN}
@defvr {Built-in Variable} NaN
@defvrx {Built-in Variable} nan
Not a number.  This is the result of an operation like
@iftex
@tex
$0/0$, or $\infty - \infty$,
@end tex
@end iftex
@ifinfo
0/0, or @samp{Inf - Inf},
@end ifinfo
or any operation with a NaN.

Note that NaN always compares not equal to NaN.  This behavior is
specified by the IEEE standard for floating point arithmetic.  To
find NaN values, you must use the @code{isnan} function.
@end defvr


@anchor{doc-pi}
@defvr {Built-in Variable} pi
The ratio of the circumference of a circle to its diameter.
Internally, @code{pi} is computed as @samp{4.0 * atan (1.0)}.
@end defvr


@anchor{doc-e}
@defvr {Built-in Variable} e
The base of natural logarithms.  The constant
@iftex
@tex
 $e$
@end tex
@end iftex
@ifinfo
 @var{e}
@end ifinfo
 satisfies the equation
@iftex
@tex
 $\log (e) = 1$.
@end tex
@end iftex
@ifinfo
 @code{log} (@var{e}) = 1.
@end ifinfo
@end defvr


@anchor{doc-eps}
@defvr {Built-in Variable} eps
The machine precision.  More precisely, @code{eps} is the largest
relative spacing between any two adjacent numbers in the machine's
floating point system.  This number is obviously system-dependent.  On
machines that support 64 bit IEEE floating point arithmetic, @code{eps}
is approximately
@ifinfo
 2.2204e-16.
@end ifinfo
@iftex
@tex
 $2.2204\times10^{-16}$.
@end tex
@end iftex
@end defvr


@anchor{doc-realmax}
@defvr {Built-in Variable} realmax
The largest floating point number that is representable.  The actual
value is system-dependent.  On machines that support 64-bit IEEE
floating point arithmetic, @code{realmax} is approximately
@ifinfo
 1.7977e+308
@end ifinfo
@iftex
@tex
 $1.7977\times10^{308}$.
@end tex
@end iftex
@end defvr


@anchor{doc-realmin}
@defvr {Built-in Variable} realmin
The smallest normalized floating point number that is representable.
The actual value is system-dependent.  On machines that support
64-bit IEEE floating point arithmetic, @code{realmin} is approximately
@ifinfo
 2.2251e-308
@end ifinfo
@iftex
@tex
 $2.2251\times10^{-308}$.
@end tex
@end iftex
@end defvr