1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
|
@c Copyright (C) 1996, 1997 John W. Eaton
@c This is part of the Octave manual.
@c For copying conditions, see the file gpl.texi.
@node Arithmetic
@chapter Arithmetic
Unless otherwise noted, all of the functions described in this chapter
will work for real and complex scalar or matrix arguments.
@menu
* Utility Functions::
* Complex Arithmetic::
* Trigonometry::
* Sums and Products::
* Special Functions::
* Coordinate Transformations::
* Mathematical Constants::
@end menu
@node Utility Functions
@section Utility Functions
The following functions are available for working with complex numbers.
Each expects a single argument. They are called @dfn{mapping functions}
because when given a matrix argument, they apply the given function to
each element of the matrix.
@DOCSTRING(ceil)
@DOCSTRING(exp)
@DOCSTRING(fix)
@DOCSTRING(floor)
@DOCSTRING(gcd)
@DOCSTRING(lcm)
@DOCSTRING(log)
@DOCSTRING(log10)
@DOCSTRING(log2)
@DOCSTRING(max)
@DOCSTRING(min)
@DOCSTRING(mod)
@DOCSTRING(nextpow2)
@DOCSTRING(pow2)
@DOCSTRING(rem)
@DOCSTRING(round)
@DOCSTRING(sign)
@DOCSTRING(sqrt)
@node Complex Arithmetic
@section Complex Arithmetic
The following functions are available for working with complex
numbers. Each expects a single argument. Given a matrix they work on
an element by element basis. In the descriptions of the following
functions,
@iftex
@tex
$z$ is the complex number $x + iy$, where $i$ is defined as
$\sqrt{-1}$.
@end tex
@end iftex
@ifinfo
@var{z} is the complex number @var{x} + @var{i}@var{y}, where @var{i} is
defined as @code{sqrt (-1)}.
@end ifinfo
@DOCSTRING(abs)
@DOCSTRING(arg)
@DOCSTRING(conj)
@DOCSTRING(imag)
@DOCSTRING(real)
@node Trigonometry
@section Trigonometry
Octave provides the following trigonometric functions. Angles are
specified in radians. To convert from degrees to radians multipy by
@iftex
@tex
$\pi/180$
@end tex
@end iftex
@ifinfo
@code{pi/180}
@end ifinfo
(e.g. @code{sin (30 * pi/180)} returns the sine of 30 degrees).
@DOCSTRING(sin)
@DOCSTRING(cos)
@DOCSTRING(tan)
@DOCSTRING(sec)
@DOCSTRING(csc)
@DOCSTRING(cot)
@DOCSTRING(asin)
@DOCSTRING(acos)
@DOCSTRING(atan)
@DOCSTRING(asec)
@DOCSTRING(acsc)
@DOCSTRING(acot)
@DOCSTRING(sinh)
@DOCSTRING(cosh)
@DOCSTRING(tanh)
@DOCSTRING(sech)
@DOCSTRING(csch)
@DOCSTRING(coth)
@DOCSTRING(asinh)
@DOCSTRING(acosh)
@DOCSTRING(atanh)
@DOCSTRING(asech)
@DOCSTRING(acsch)
@DOCSTRING(acoth)
Each of these functions expect a single argument. For matrix arguments,
they work on an element by element basis. For example,
@example
@group
sin ([1, 2; 3, 4])
@result{} 0.84147 0.90930
0.14112 -0.75680
@end group
@end example
@DOCSTRING(atan2)
@node Sums and Products
@section Sums and Products
@DOCSTRING(sum)
@DOCSTRING(prod)
@DOCSTRING(cumsum)
@DOCSTRING(cumprod)
@DOCSTRING(sumsq)
@node Special Functions
@section Special Functions
@DOCSTRING(besselj)
@DOCSTRING(airy)
@DOCSTRING(beta)
@DOCSTRING(betainc)
@DOCSTRING(bincoeff)
@DOCSTRING(erf)
@DOCSTRING(erfc)
@DOCSTRING(erfinv)
@DOCSTRING(gamma)
@DOCSTRING(gammainc)
@DOCSTRING(lgamma)
@DOCSTRING(cross)
@DOCSTRING(commutation_matrix)
@DOCSTRING(duplication_matrix)
@node Coordinate Transformations
@section Coordinate Transformations
@DOCSTRING(cart2pol)
@DOCSTRING(pol2cart)
@DOCSTRING(cart2sph)
@DOCSTRING(sph2cart)
@node Mathematical Constants
@section Mathematical Constants
@DOCSTRING(I)
@DOCSTRING(Inf)
@DOCSTRING(NaN)
@DOCSTRING(pi)
@DOCSTRING(e)
@DOCSTRING(eps)
@DOCSTRING(realmax)
@DOCSTRING(realmin)
|