1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
|
@c DO NOT EDIT! Generated automatically by munge-texi.
@c Copyright (C) 1996, 1997 John W. Eaton
@c This is part of the Octave manual.
@c For copying conditions, see the file gpl.texi.
@node Data Types
@chapter Data Types
@cindex data types
All versions of Octave include a number of built-in data types,
including real and complex scalars and matrices, character strings, and
a data structure type.
It is also possible to define new specialized data types by writing a
small amount of C++ code. On some systems, new data types can be loaded
dynamically while Octave is running, so it is not necessary to recompile
all of Octave just to add a new type. @xref{Dynamically Linked
Functions}, for more information about Octave's dynamic linking
capabilities. @ref{User-defined Data Types} describes what you must do
to define a new data type for Octave.
@anchor{doc-typeinfo}
@deftypefn {Built-in Function} {} typeinfo (@var{expr})
Return the type of the expression @var{expr}, as a string. If
@var{EXPR} is omitted, return an array of strings containing all the
currently installed data types.
@end deftypefn
@menu
* Built-in Data Types::
* User-defined Data Types::
* Object Sizes::
@end menu
@node Built-in Data Types
@section Built-in Data Types
@cindex data types, built-in
@cindex built-in data types
The standard built-in data types are real and complex scalars and
matrices, ranges, character strings, and a data structure type.
Additional built-in data types may be added in future versions. If you
need a specialized data type that is not currently provided as a
built-in type, you are encouraged to write your own user-defined data
type and contribute it for distribution in a future release of Octave.
@menu
* Numeric Objects::
* Missing Data::
* String Objects::
* Data Structure Objects::
@end menu
@node Numeric Objects
@subsection Numeric Objects
@cindex numeric constant
@cindex numeric value
Octave's built-in numeric objects include real and complex scalars and
matrices. All built-in numeric data is currently stored as double
precision numbers. On systems that use the IEEE floating point format,
values in the range of approximately
@iftex
@tex
$2.2251\times10^{-308}$ to $1.7977\times10^{308}$
@end tex
@end iftex
@ifinfo
2.2251e-308 to 1.7977e+308
@end ifinfo
can be stored, and the relative precision is approximately
@iftex
@tex
$2.2204\times10^{-16}$.
@end tex
@end iftex
@ifinfo
2.2204e-16.
@end ifinfo
The exact values are given by the variables @code{realmin},
@code{realmax}, and @code{eps}, respectively.
Matrix objects can be of any size, and can be dynamically reshaped and
resized. It is easy to extract individual rows, columns, or submatrices
using a variety of powerful indexing features. @xref{Index Expressions}.
@xref{Numeric Data Types}, for more information.
@node Missing Data
@subsection Missing Data
@cindex missing data
@anchor{doc-NA}
@defvr {Built-in Variable} NA
Missing value.
@end defvr
@anchor{doc-isna}
@deftypefn {Mapping Function} {} isna (@var{x})
Return 1 for elements of @var{x} that are NA (missing) values and zero
otherwise. For example,
@example
@group
is_NA ([13, Inf, NA, NaN])
@result{} [ 0, 0, 1, 0 ]
@end group
@end example
@end deftypefn
@anchor{doc-is_nan_or_na}
@deftypefn {Mapping Function} {} is_nan_or_na (@var{x})
Return 1 for elements of @var{x} that are NaN or NA (missing) values
and zero otherwise. For example,
@example
@group
is_NAN_or_NA ([13, Inf, NA, NaN])
@result{} [ 0, 0, 1, 1 ]
@end group
@end example
@end deftypefn
@node String Objects
@subsection String Objects
@cindex strings
@cindex character strings
@opindex "
@opindex '
A character string in Octave consists of a sequence of characters
enclosed in either double-quote or single-quote marks. Internally,
Octave currently stores strings as matrices of characters. All the
indexing operations that work for matrix objects also work for strings.
@xref{Strings}, for more information.
@node Data Structure Objects
@subsection Data Structure Objects
@cindex structures
@cindex data structures
Octave's data structure type can help you to organize related objects of
different types. The current implementation uses an associative array
with indices limited to strings, but the syntax is more like C-style
structures.
@xref{Data Structures}, for more information.
@node User-defined Data Types
@section User-defined Data Types
@cindex user-defined data types
@cindex data types, user-defined
Someday I hope to expand this to include a complete description of
Octave's mechanism for managing user-defined data types. Until this
feature is documented here, you will have to make do by reading the code
in the @file{ov.h}, @file{ops.h}, and related files from Octave's
@file{src} directory.
@node Object Sizes
@section Object Sizes
The following functions allow you to determine the size of a variable or
expression. These functions are defined for all objects. They return
@minus{}1 when the operation doesn't make sense. For example, Octave's
data structure type doesn't have rows or columns, so the @code{rows} and
@code{columns} functions return @minus{}1 for structure arguments.
@anchor{doc-columns}
@deftypefn {Function File} {} columns (@var{a})
Return the number of columns of @var{a}.
@end deftypefn
@seealso{size, rows, length, isscalar, isvector, and ismatrix}
@anchor{doc-rows}
@deftypefn {Function File} {} rows (@var{a})
Return the number of rows of @var{a}.
@end deftypefn
@seealso{size, columns, length, isscalar, isvector, and ismatrix}
@anchor{doc-length}
@deftypefn {Built-in Function} {} length (@var{a})
Return the `length' of the object @var{a}. For matrix objects, the
length is the number of rows or columns, whichever is greater (this
odd definition is used for compatibility with Matlab).
@end deftypefn
@anchor{doc-size}
@deftypefn {Built-in Function} {} size (@var{a}, @var{n})
Return the number rows and columns of @var{a}.
With one input argument and one output argument, the result is returned
in a row vector. If there are multiple output arguments, the number of
rows is assigned to the first, and the number of columns to the second,
etc. For example,
@example
@group
size ([1, 2; 3, 4; 5, 6])
@result{} [ 3, 2 ]
[nr, nc] = size ([1, 2; 3, 4; 5, 6])
@result{} nr = 3
@result{} nc = 2
@end group
@end example
If given a second argument, @code{size} will return the size of the
corresponding dimension. For example
@example
size ([1, 2; 3, 4; 5, 6], 2)
@result{} 2
@end example
@noindent
returns the number of columns in the given matrix.
@end deftypefn
@anchor{doc-isempty}
@deftypefn {Built-in Function} {} isempty (@var{a})
Return 1 if @var{a} is an empty matrix (either the number of rows, or
the number of columns, or both are zero). Otherwise, return 0.
@end deftypefn
|