1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
|
@c DO NOT EDIT! Generated automatically by munge-texi.
@c Copyright (C) 1996, 1997 John W. Eaton
@c This is part of the Octave manual.
@c For copying conditions, see the file gpl.texi.
@node Nonlinear Equations
@chapter Nonlinear Equations
@cindex nonlinear equations
@cindex equations, nonlinear
Octave can solve sets of nonlinear equations of the form
@iftex
@tex
$$
f (x) = 0
$$
@end tex
@end iftex
@ifinfo
@example
F (x) = 0
@end example
@end ifinfo
@noindent
using the function @code{fsolve}, which is based on the @sc{Minpack}
subroutine @code{hybrd}.
@anchor{doc-fsolve}
@deftypefn {Loadable Function} {[@var{x}, @var{info}, @var{msg}] =} fsolve (@var{fcn}, @var{x0})
Given @var{fcn}, the name of a function of the form @code{f (@var{x})}
and an initial starting point @var{x0}, @code{fsolve} solves the set of
equations such that @code{f(@var{x}) == 0}.
If @var{fcn} is a two-element string array, the first element names
the function @math{f} described above, and the second element names
a function of the form @code{j (@var{x})} to compute the Jacobian
matrix with elements
@tex
$$ J = {\partial f_i \over \partial x_j} $$
@end tex
@ifinfo
@example
df_i
jac(i,j) = ----
dx_j
@end example
@end ifinfo
You can use the function @code{fsolve_options} to set optional
parameters for @code{fsolve}.
@end deftypefn
@anchor{doc-fsolve_options}
@deftypefn {Loadable Function} {} fsolve_options (@var{opt}, @var{val})
When called with two arguments, this function allows you set options
parameters for the function @code{fsolve}. Given one argument,
@code{fsolve_options} returns the value of the corresponding option. If
no arguments are supplied, the names of all the available options and
their current values are displayed.
Options include
@table @code
@item "tolerance"
Nonnegative relative tolerance.
@end table
@end deftypefn
Here is a complete example. To solve the set of equations
@iftex
@tex
$$
\eqalign{-2x^2 + 3xy + 4\sin(y) - 6 &= 0\cr
3x^2 - 2xy^2 + 3\cos(x) + 4 &= 0}
$$
@end tex
@end iftex
@ifinfo
@example
-2x^2 + 3xy + 4 sin(y) = 6
3x^2 - 2xy^2 + 3 cos(x) = -4
@end example
@end ifinfo
@noindent
you first need to write a function to compute the value of the given
function. For example:
@example
function y = f (x)
y(1) = -2*x(1)^2 + 3*x(1)*x(2) + 4*sin(x(2)) - 6;
y(2) = 3*x(1)^2 - 2*x(1)*x(2)^2 + 3*cos(x(1)) + 4;
endfunction
@end example
Then, call @code{fsolve} with a specified initial condition to find the
roots of the system of equations. For example, given the function
@code{f} defined above,
@example
[x, info] = fsolve ("f", [1; 2])
@end example
@noindent
results in the solution
@example
x =
0.57983
2.54621
info = 1
@end example
A value of @code{info = 1} indicates that the solution has converged.
The function @code{perror} may be used to print English messages
corresponding to the numeric error codes. For example,
@example
@group
perror ("fsolve", 1)
@print{} solution converged to requested tolerance
@end group
@end example
|