File: numbers.txi

package info (click to toggle)
octave2.1 1%3A2.1.73-13
  • links: PTS
  • area: main
  • in suites: etch, etch-m68k
  • size: 37,028 kB
  • ctags: 20,874
  • sloc: cpp: 106,508; fortran: 46,978; ansic: 5,720; sh: 4,800; makefile: 3,186; yacc: 3,132; lex: 2,892; lisp: 1,715; perl: 778; awk: 174; exp: 134
file content (407 lines) | stat: -rw-r--r-- 10,230 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
@c Copyright (C) 1996, 1997 John W. Eaton
@c This is part of the Octave manual.
@c For copying conditions, see the file gpl.texi.

@node Numeric Data Types
@chapter Numeric Data Types
@cindex numeric constant
@cindex numeric value

A @dfn{numeric constant} may be a scalar, a vector, or a matrix, and it
may contain complex values.

The simplest form of a numeric constant, a scalar, is a single number
that can be an integer, a decimal fraction, a number in scientific
(exponential) notation, or a complex number.  Note that all numeric
constants are represented within Octave in double-precision floating
point format (complex constants are stored as pairs of double-precision
floating point values).  Here are some examples of real-valued numeric
constants, which all have the same value:

@example
@group
105
1.05e+2
1050e-1
@end group
@end example

To specify complex constants, you can write an expression of the form

@example
@group
3 + 4i
3.0 + 4.0i
0.3e1 + 40e-1i
@end group
@end example

all of which are equivalent.  The letter @samp{i} in the previous example
stands for the pure imaginary constant, defined as
@iftex
@tex
  $\sqrt{-1}$.
@end tex
@end iftex
@ifinfo
  @code{sqrt (-1)}.
@end ifinfo

For Octave to recognize a value as the imaginary part of a complex
constant, a space must not appear between the number and the @samp{i}.
If it does, Octave will print an error message, like this:

@example
@group
octave:13> 3 + 4 i

parse error:

  3 + 4 i
        ^
@end group
@end example

You may also use @samp{j}, @samp{I}, or @samp{J} in place of the
@samp{i} above.  All four forms are equivalent.

@menu
* Matrices::                    
* Ranges::                      
* Logical Values::              
* Predicates for Numeric Objects::  
@end menu

@node Matrices
@section Matrices
@cindex matrices

@opindex [
@opindex ]
@opindex ;
@opindex ,

It is easy to define a matrix of values in Octave.  The size of the
matrix is determined automatically, so it is not necessary to explicitly
state the dimensions.  The expression

@example
a = [1, 2; 3, 4]
@end example

@noindent
results in the matrix
@iftex
@tex
$$ a = \left[ \matrix{ 1 & 2 \cr 3 & 4 } \right] $$
@end tex
@end iftex
@ifinfo

@example
@group

        /      \
        | 1  2 |
  a  =  |      |
        | 3  4 |
        \      /

@end group
@end example
@end ifinfo

Elements of a matrix may be arbitrary expressions, provided that the
dimensions all make sense when combining the various pieces.  For
example, given the above matrix, the expression

@example
[ a, a ]
@end example

@noindent
produces the matrix

@example
@group
ans =

  1  2  1  2
  3  4  3  4
@end group
@end example

@noindent
but the expression

@example
[ a, 1 ]
@end example

@noindent
produces the error

@example
error: number of rows must match near line 13, column 6
@end example

@noindent
(assuming that this expression was entered as the first thing on line
13, of course).

Inside the square brackets that delimit a matrix expression, Octave
looks at the surrounding context to determine whether spaces and newline
characters should be converted into element and row separators, or
simply ignored, so an expression like

@example
@group
a = [ 1 2
      3 4 ]
@end group
@end example

@noindent
will work.  However, some possible sources of confusion remain.  For
example, in the expression

@example
[ 1 - 1 ]
@end example

@noindent
the @samp{-} is treated as a binary operator and the result is the
scalar 0, but in the expression

@example
[ 1 -1 ]
@end example

@noindent
the @samp{-} is treated as a unary operator and the result is the
vector @code{[ 1, -1 ]}.  Similarly, the expression

@example
[ sin (pi) ]
@end example

@noindent
will be parsed as

@example
[ sin, (pi) ]
@end example

@noindent
and will result in an error since the @code{sin} function will be
called with no arguments.  To get around this, you must omit the space
between @code{sin} and the opening parenthesis, or enclose the
expression in a set of parentheses:

@example
[ (sin (pi)) ]
@end example

Whitespace surrounding the single quote character (@samp{'}, used as a
transpose operator and for delimiting character strings) can also cause
confusion.  Given @code{a = 1}, the expression

@example
[ 1 a' ]
@end example

@noindent
results in the single quote character being treated as a
transpose operator and the result is the vector @code{[ 1, 1 ]}, but the
expression

@example
[ 1 a ' ]
@end example

@noindent
produces the error message

@example
error: unterminated string constant
@end example

@noindent
because to not do so would cause trouble when parsing the valid expression

@example
[ a 'foo' ]
@end example

For clarity, it is probably best to always use commas and semicolons to
separate matrix elements and rows.

@DOCSTRING(warn_separator_insert)

When you type a matrix or the name of a variable whose value is a
matrix, Octave responds by printing the matrix in with neatly aligned
rows and columns.  If the rows of the matrix are too large to fit on the
screen, Octave splits the matrix and displays a header before each
section to indicate which columns are being displayed.  You can use the
following variables to control the format of the output.

@DOCSTRING(output_max_field_width)

@DOCSTRING(output_precision)

It is possible to achieve a wide range of output styles by using
different values of @code{output_precision} and
@code{output_max_field_width}.  Reasonable combinations can be set using
the @code{format} function.  @xref{Basic Input and Output}.

@DOCSTRING(split_long_rows)

Octave automatically switches to scientific notation when values become
very large or very small.  This guarantees that you will see several
significant figures for every value in a matrix.  If you would prefer to
see all values in a matrix printed in a fixed point format, you can set
the built-in variable @code{fixed_point_format} to a nonzero value.  But
doing so is not recommended, because it can produce output that can
easily be misinterpreted.

@DOCSTRING(fixed_point_format)

@menu
* Empty Matrices::              
@end menu

@node Empty Matrices
@subsection Empty Matrices

A matrix may have one or both dimensions zero, and operations on empty
matrices are handled as described by Carl de Boor in @cite{An Empty
Exercise}, SIGNUM, Volume 25, pages 2--6, 1990 and C. N. Nett and W. M.
Haddad, in @cite{A System-Theoretic Appropriate Realization of the Empty
Matrix Concept}, IEEE Transactions on Automatic Control, Volume 38,
Number 5, May 1993.
@iftex
@tex
Briefly, given a scalar $s$, an $m\times n$ matrix $M_{m\times n}$,
and an $m\times n$ empty matrix $[\,]_{m\times n}$ (with either one or
both dimensions equal to zero), the following are true:
$$
\eqalign{%
s \cdot [\,]_{m\times n} = [\,]_{m\times n} \cdot s &= [\,]_{m\times n}\cr
[\,]_{m\times n} + [\,]_{m\times n} &= [\,]_{m\times n}\cr
[\,]_{0\times m} \cdot  M_{m\times n} &= [\,]_{0\times n}\cr
M_{m\times n} \cdot [\,]_{n\times 0} &= [\,]_{m\times 0}\cr
[\,]_{m\times 0} \cdot [\,]_{0\times n} &=  0_{m\times n}}
$$
@end tex
@end iftex
@ifinfo
Briefly, given a scalar @var{s}, an @var{m} by
@var{n} matrix @code{M(mxn)}, and an @var{m} by @var{n} empty matrix
@code{[](mxn)} (with either one or both dimensions equal to zero), the
following are true:

@example
@group
s * [](mxn) = [](mxn) * s = [](mxn)

    [](mxn) + [](mxn) = [](mxn)

    [](0xm) *  M(mxn) = [](0xn)

     M(mxn) * [](nx0) = [](mx0)

    [](mx0) * [](0xn) =  0(mxn)
@end group
@end example
@end ifinfo

By default, dimensions of the empty matrix are printed along with the
empty matrix symbol, @samp{[]}.  The built-in variable
@code{print_empty_dimensions} controls this behavior.

@DOCSTRING(print_empty_dimensions)

Empty matrices may also be used in assignment statements as a convenient
way to delete rows or columns of matrices.
@xref{Assignment Ops, ,Assignment Expressions}.

@DOCSTRING(warn_empty_list_elements)

When Octave parses a matrix expression, it examines the elements of the
list to determine whether they are all constants.  If they are, it
replaces the list with a single matrix constant.

@node Ranges
@section Ranges
@cindex range expressions
@cindex expression, range

@opindex colon

A @dfn{range} is a convenient way to write a row vector with evenly
spaced elements.  A range expression is defined by the value of the first
element in the range, an optional value for the increment between
elements, and a maximum value which the elements of the range will not
exceed.  The base, increment, and limit are separated by colons (the
@samp{:} character) and may contain any arithmetic expressions and
function calls.  If the increment is omitted, it is assumed to be 1.
For example, the range

@example
1 : 5
@end example

@noindent
defines the set of values @samp{[ 1, 2, 3, 4, 5 ]}, and the range

@example
1 : 3 : 5
@end example

@noindent
defines the set of values @samp{[ 1, 4 ]}.

Although a range constant specifies a row vector, Octave does @emph{not}
convert range constants to vectors unless it is necessary to do so.
This allows you to write a constant like @samp{1 : 10000} without using
80,000 bytes of storage on a typical 32-bit workstation.

Note that the upper (or lower, if the increment is negative) bound on
the range is not always included in the set of values, and that ranges
defined by floating point values can produce surprising results because
Octave uses floating point arithmetic to compute the values in the
range.  If it is important to include the endpoints of a range and the
number of elements is known, you should use the @code{linspace} function
instead (@pxref{Special Utility Matrices}).

When Octave parses a range expression, it examines the elements of the
expression to determine whether they are all constants.  If they are, it
replaces the range expression with a single range constant.

@node Logical Values
@section Logical Values

@DOCSTRING(true)

@DOCSTRING(false)

@node Predicates for Numeric Objects
@section Predicates for Numeric Objects

@DOCSTRING(isnumeric)

@DOCSTRING(isreal)

@DOCSTRING(iscomplex)

@DOCSTRING(ismatrix)

@DOCSTRING(isvector)

@DOCSTRING(isscalar)

@DOCSTRING(issquare)

@DOCSTRING(issymmetric)

@DOCSTRING(isbool)