1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369
|
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html40/loose.dtd">
<HTML>
<!-- Created on May, 18 2005 by texi2html 1.66 -->
<!--
Written by: Lionel Cons <Lionel.Cons@cern.ch> (original author)
Karl Berry <karl@freefriends.org>
Olaf Bachmann <obachman@mathematik.uni-kl.de>
and many others.
Maintained by: Many creative people <dev@texi2html.cvshome.org>
Send bugs and suggestions to <users@texi2html.cvshome.org>
-->
<HEAD>
<TITLE>GNU Octave: Matrix Manipulation</TITLE>
<META NAME="description" CONTENT="GNU Octave: Matrix Manipulation">
<META NAME="keywords" CONTENT="GNU Octave: Matrix Manipulation">
<META NAME="resource-type" CONTENT="document">
<META NAME="distribution" CONTENT="global">
<META NAME="Generator" CONTENT="texi2html 1.66">
</HEAD>
<BODY LANG="en" BGCOLOR="#FFFFFF" TEXT="#000000" LINK="#0000FF" VLINK="#800080" ALINK="#FF0000">
<A NAME="SEC147"></A>
<TABLE CELLPADDING=1 CELLSPACING=1 BORDER=0>
<TR><TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="octave_18.html#SEC146"> < </A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="octave_19.html#SEC148"> > </A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT"> <TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="octave_18.html#SEC138"> << </A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="octave.html#SEC_Top"> Up </A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="octave_20.html#SEC152"> >> </A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT"> <TD VALIGN="MIDDLE" ALIGN="LEFT"> <TD VALIGN="MIDDLE" ALIGN="LEFT"> <TD VALIGN="MIDDLE" ALIGN="LEFT"> <TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="octave.html#SEC_Top">Top</A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="octave_toc.html#SEC_Contents">Contents</A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="octave_42.html#SEC245">Index</A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="octave_abt.html#SEC_About"> ? </A>]</TD>
</TR></TABLE>
<H1> 18. Matrix Manipulation </H1>
<!--docid::SEC147::-->
<P>
There are a number of functions available for checking to see if the
elements of a matrix meet some condition, and for rearranging the
elements of a matrix. For example, Octave can easily tell you if all
the elements of a matrix are finite, or are less than some specified
value. Octave can also rotate the elements, extract the upper- or
lower-triangular parts, or sort the columns of a matrix.
</P>
<P>
<TABLE BORDER="0" CELLSPACING="0">
<TR><TD ALIGN="left" VALIGN="TOP"><A HREF="octave_19.html#SEC148">18.1 Finding Elements and Checking Conditions</A></TD><TD> </TD><TD ALIGN="left" VALIGN="TOP"></TD></TR>
<TR><TD ALIGN="left" VALIGN="TOP"><A HREF="octave_19.html#SEC149">18.2 Rearranging Matrices</A></TD><TD> </TD><TD ALIGN="left" VALIGN="TOP"></TD></TR>
<TR><TD ALIGN="left" VALIGN="TOP"><A HREF="octave_19.html#SEC150">18.3 Special Utility Matrices</A></TD><TD> </TD><TD ALIGN="left" VALIGN="TOP"></TD></TR>
<TR><TD ALIGN="left" VALIGN="TOP"><A HREF="octave_19.html#SEC151">18.4 Famous Matrices</A></TD><TD> </TD><TD ALIGN="left" VALIGN="TOP"></TD></TR>
</TABLE>
<P>
<A NAME="Finding Elements and Checking Conditions"></A>
<HR SIZE="6">
<A NAME="SEC148"></A>
<TABLE CELLPADDING=1 CELLSPACING=1 BORDER=0>
<TR><TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="octave_19.html#SEC147"> < </A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="octave_19.html#SEC149"> > </A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT"> <TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="octave_19.html#SEC147"> << </A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="octave_19.html#SEC147"> Up </A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="octave_20.html#SEC152"> >> </A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT"> <TD VALIGN="MIDDLE" ALIGN="LEFT"> <TD VALIGN="MIDDLE" ALIGN="LEFT"> <TD VALIGN="MIDDLE" ALIGN="LEFT"> <TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="octave.html#SEC_Top">Top</A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="octave_toc.html#SEC_Contents">Contents</A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="octave_42.html#SEC245">Index</A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="octave_abt.html#SEC_About"> ? </A>]</TD>
</TR></TABLE>
<H2> 18.1 Finding Elements and Checking Conditions </H2>
<!--docid::SEC148::-->
<P>
The functions <CODE>any</CODE> and <CODE>all</CODE> are useful for determining
whether any or all of the elements of a matrix satisfy some condition.
The <CODE>find</CODE> function is also useful in determining which elements of
a matrix meet a specified condition.
</P>
<P>
<A NAME="doc-any"></A>
<A NAME="IDX539"></A>
</P>
<DL>
<DT><U>Built-in Function:</U> <B>any</B> <I>(<VAR>x</VAR>, <VAR>dim</VAR>)</I>
<DD>For a vector argument, return 1 if any element of the vector is
nonzero.
<P>
For a matrix argument, return a row vector of ones and
zeros with each element indicating whether any of the elements of the
corresponding column of the matrix are nonzero. For example,
</P>
<P>
<TABLE><tr><td> </td><td class=example><pre>any (eye (2, 4))
=> [ 1, 1, 0, 0 ]
</pre></td></tr></table><P>
If the optional argument <VAR>dim</VAR> is supplied, work along dimension
<VAR>dim</VAR>. For example,
</P>
<P>
<TABLE><tr><td> </td><td class=example><pre>any (eye (2, 4), 2)
=> [ 1; 1 ]
</pre></td></tr></table></DL>
<P>
<A NAME="doc-all"></A>
<A NAME="IDX540"></A>
</P>
<DL>
<DT><U>Built-in Function:</U> <B>all</B> <I>(<VAR>x</VAR>, <VAR>dim</VAR>)</I>
<DD>The function <CODE>all</CODE> behaves like the function <CODE>any</CODE>, except
that it returns true only if all the elements of a vector, or all the
elements along dimension <VAR>dim</VAR> of a matrix, are nonzero.
</DL>
<P>
Since the comparison operators (see section <A HREF="octave_11.html#SEC78">10.4 Comparison Operators</A>) return matrices
of ones and zeros, it is easy to test a matrix for many things, not just
whether the elements are nonzero. For example,
</P>
<P>
<TABLE><tr><td> </td><td class=example><pre>all (all (rand (5) < 0.9))
=> 0
</pre></td></tr></table><P>
tests a random 5 by 5 matrix to see if all of its elements are less
than 0.9.
</P>
<P>
Note that in conditional contexts (like the test clause of <CODE>if</CODE> and
<CODE>while</CODE> statements) Octave treats the test as if you had typed
<CODE>all (all (condition))</CODE>.
</P>
<P>
<A NAME="doc-xor"></A>
<A NAME="IDX541"></A>
</P>
<DL>
<DT><U>Mapping Function:</U> <B>xor</B> <I>(<VAR>x</VAR>, <VAR>y</VAR>)</I>
<DD>Return the `exclusive or' of the entries of <VAR>x</VAR> and <VAR>y</VAR>.
For boolean expressions <VAR>x</VAR> and <VAR>y</VAR>,
<CODE>xor (<VAR>x</VAR>, <VAR>y</VAR>)</CODE> is true if and only if <VAR>x</VAR> or <VAR>y</VAR>
is true, but not if both <VAR>x</VAR> and <VAR>y</VAR> are true.
</DL>
<P>
<A NAME="doc-is_duplicate_entry"></A>
<A NAME="IDX542"></A>
</P>
<DL>
<DT><U>Function File:</U> <B>is_duplicate_entry</B> <I>(<VAR>x</VAR>)</I>
<DD>Return non-zero if any entries in <VAR>x</VAR> are duplicates of one
another.
</DL>
<P>
<A NAME="doc-diff"></A>
<A NAME="IDX543"></A>
</P>
<DL>
<DT><U>Function File:</U> <B>diff</B> <I>(<VAR>x</VAR>, <VAR>k</VAR>, <VAR>dim</VAR>)</I>
<DD>If <VAR>x</VAR> is a vector of length <VAR>n</VAR>, <CODE>diff (<VAR>x</VAR>)</CODE> is the
vector of first differences
<VAR>x</VAR>(2) - <VAR>x</VAR>(1), <small>...</small>, <VAR>x</VAR>(n) - <VAR>x</VAR>(n-1).
<P>
If <VAR>x</VAR> is a matrix, <CODE>diff (<VAR>x</VAR>)</CODE> is the matrix of column
differences along the first non-singleton dimension.
</P>
<P>
The second argument is optional. If supplied, <CODE>diff (<VAR>x</VAR>,
<VAR>k</VAR>)</CODE>, where <VAR>k</VAR> is a nonnegative integer, returns the
<VAR>k</VAR>-th differences. It is possible that <VAR>k</VAR> is larger than
then first non-singleton dimension of the matrix. In this case,
<CODE>diff</CODE> continues to take the differences along the next
non-singleton dimension.
</P>
<P>
The dimension along which to take the difference can be explicitly
stated with the optional variable <VAR>dim</VAR>. In this case the
<VAR>k</VAR>-th order differences are calculated along this dimension.
In the case where <VAR>k</VAR> exceeds <CODE>size (<VAR>x</VAR>, <VAR>dim</VAR>)</CODE>
then an empty matrix is returned.
</P>
</DL>
<P>
<A NAME="doc-isinf"></A>
<A NAME="IDX544"></A>
</P>
<DL>
<DT><U>Mapping Function:</U> <B>isinf</B> <I>(<VAR>x</VAR>)</I>
<DD>Return 1 for elements of <VAR>x</VAR> that are infinite and zero
otherwise. For example,
<P>
<TABLE><tr><td> </td><td class=example><pre>isinf ([13, Inf, NA, NaN])
=> [ 0, 1, 0, 0 ]
</pre></td></tr></table></DL>
<P>
<A NAME="doc-isnan"></A>
<A NAME="IDX545"></A>
</P>
<DL>
<DT><U>Mapping Function:</U> <B>isnan</B> <I>(<VAR>x</VAR>)</I>
<DD>Return 1 for elements of <VAR>x</VAR> that are NaN values and zero
otherwise. For example,
<P>
<TABLE><tr><td> </td><td class=example><pre>isnan ([13, Inf, NA, NaN])
=> [ 0, 0, 0, 1 ]
</pre></td></tr></table></DL>
<P>
<A NAME="doc-finite"></A>
<A NAME="IDX546"></A>
</P>
<DL>
<DT><U>Mapping Function:</U> <B>finite</B> <I>(<VAR>x</VAR>)</I>
<DD>Return 1 for elements of <VAR>x</VAR> that are finite values and zero
otherwise. For example,
<P>
<TABLE><tr><td> </td><td class=example><pre>finite ([13, Inf, NA, NaN])
=> [ 1, 0, 0, 0 ]
</pre></td></tr></table></DL>
<P>
<A NAME="doc-find"></A>
<A NAME="IDX547"></A>
</P>
<DL>
<DT><U>Loadable Function:</U> <B>find</B> <I>(<VAR>x</VAR>)</I>
<DD>Return a vector of indices of nonzero elements of a matrix. To obtain a
single index for each matrix element, Octave pretends that the columns
of a matrix form one long vector (like Fortran arrays are stored). For
example,
<P>
<TABLE><tr><td> </td><td class=example><pre>find (eye (2))
=> [ 1; 4 ]
</pre></td></tr></table><P>
If two outputs are requested, <CODE>find</CODE> returns the row and column
indices of nonzero elements of a matrix. For example,
</P>
<P>
<TABLE><tr><td> </td><td class=example><pre>[i, j] = find (2 * eye (2))
=> i = [ 1; 2 ]
=> j = [ 1; 2 ]
</pre></td></tr></table><P>
If three outputs are requested, <CODE>find</CODE> also returns a vector
containing the nonzero values. For example,
</P>
<P>
<TABLE><tr><td> </td><td class=example><pre>[i, j, v] = find (3 * eye (2))
=> i = [ 1; 2 ]
=> j = [ 1; 2 ]
=> v = [ 3; 3 ]
</pre></td></tr></table></DL>
<P>
<A NAME="doc-common_size"></A>
<A NAME="IDX548"></A>
</P>
<DL>
<DT><U>Function File:</U> [<VAR>err</VAR>, <VAR>y1</VAR>, ...] = <B>common_size</B> <I>(<VAR>x1</VAR>, ...)</I>
<DD>Determine if all input arguments are either scalar or of common
size. If so, <VAR>err</VAR> is zero, and <VAR>yi</VAR> is a matrix of the
common size with all entries equal to <VAR>xi</VAR> if this is a scalar or
<VAR>xi</VAR> otherwise. If the inputs cannot be brought to a common size,
errorcode is 1, and <VAR>yi</VAR> is <VAR>xi</VAR>. For example,
<P>
<TABLE><tr><td> </td><td class=example><pre>[errorcode, a, b] = common_size ([1 2; 3 4], 5)
=> errorcode = 0
=> a = [ 1, 2; 3, 4 ]
=> b = [ 5, 5; 5, 5 ]
</pre></td></tr></table><P>
This is useful for implementing functions where arguments can either
be scalars or of common size.
</P>
</DL>
<P>
<A NAME="Rearranging Matrices"></A>
<HR SIZE="6">
<A NAME="SEC149"></A>
<TABLE CELLPADDING=1 CELLSPACING=1 BORDER=0>
<TR><TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="octave_19.html#SEC148"> < </A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="octave_19.html#SEC150"> > </A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT"> <TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="octave_19.html#SEC147"> << </A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="octave_19.html#SEC147"> Up </A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="octave_20.html#SEC152"> >> </A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT"> <TD VALIGN="MIDDLE" ALIGN="LEFT"> <TD VALIGN="MIDDLE" ALIGN="LEFT"> <TD VALIGN="MIDDLE" ALIGN="LEFT"> <TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="octave.html#SEC_Top">Top</A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="octave_toc.html#SEC_Contents">Contents</A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="octave_42.html#SEC245">Index</A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="octave_abt.html#SEC_About"> ? </A>]</TD>
</TR></TABLE>
<H2> 18.2 Rearranging Matrices </H2>
<!--docid::SEC149::-->
<P>
<A NAME="doc-fliplr"></A>
<A NAME="IDX549"></A>
</P>
<DL>
<DT><U>Function File:</U> <B>fliplr</B> <I>(<VAR>x</VAR>)</I>
<DD>Return a copy of <VAR>x</VAR> with the order of the columns reversed. For
example,
<P>
<TABLE><tr><td> </td><td class=example><pre>fliplr ([1, 2; 3, 4])
=> 2 1
4 3
</pre></td></tr></table><P>
Note that <CODE>fliplr</CODE> only workw with 2-D arrays. To flip N-d arrays
use <CODE>flipdim</CODE> instead.
</P>
</DL>
<P>
<A NAME="doc-flipud"></A>
<A NAME="IDX550"></A>
</P>
<DL>
<DT><U>Function File:</U> <B>flipud</B> <I>(<VAR>x</VAR>)</I>
<DD>Return a copy of <VAR>x</VAR> with the order of the rows reversed. For
example,
<P>
<TABLE><tr><td> </td><td class=example><pre>flipud ([1, 2; 3, 4])
=> 3 4
1 2
</pre></td></tr></table><P>
Due to the difficulty of defining which axis about which to flip the
matrix <CODE>flipud</CODE> only work with 2-d arrays. To flip N-d arrays
use <CODE>flipdim</CODE> instead.
</P>
</DL>
<P>
<A NAME="doc-flipdim"></A>
<A NAME="IDX551"></A>
</P>
<DL>
<DT><U>Function File:</U> <B>flipdim</B> <I>(<VAR>x</VAR>, <VAR>dim</VAR>)</I>
<DD>Return a copy of <VAR>x</VAR> flipped about the dimension <VAR>dim</VAR>.
For example
<P>
<TABLE><tr><td> </td><td class=example><pre>flipdim ([1, 2; 3, 4], 2)
=> 2 1
4 3
</pre></td></tr></table></DL>
<P>
<A NAME="doc-rot90"></A>
<A NAME="IDX552"></A>
</P>
<DL>
<DT><U>Function File:</U> <B>rot90</B> <I>(<VAR>x</VAR>, <VAR>n</VAR>)</I>
<DD>Return a copy of <VAR>x</VAR> with the elements rotated counterclockwise in
90-degree increments. The second argument is optional, and specifies
how many 90-degree rotations are to be applied (the default value is 1).
Negative values of <VAR>n</VAR> rotate the matrix in a clockwise direction.
For example,
<P>
<TABLE><tr><td> </td><td class=example><pre>rot90 ([1, 2; 3, 4], -1)
=> 3 1
4 2
</pre></td></tr></table><P>
rotates the given matrix clockwise by 90 degrees. The following are all
equivalent statements:
</P>
<P>
<TABLE><tr><td> </td><td class=example><pre>rot90 ([1, 2; 3, 4], -1)
==
rot90 ([1, 2; 3, 4], 3)
==
rot90 ([1, 2; 3, 4], 7)
</pre></td></tr></table><P>
Due to the difficulty of defining an axis about which to rotate the
matrix <CODE>rot90</CODE> only work with 2-D arrays. To rotate N-d arrays
use <CODE>rotdim</CODE> instead.
</P>
</DL>
<P>
<A NAME="doc-rotdim"></A>
<A NAME="IDX553"></A>
</P>
<DL>
<DT><U>Function File:</U> <B>rotdim</B> <I>(<VAR>x</VAR>, <VAR>n</VAR>, <VAR>plane</VAR>)</I>
<DD>Return a copy of <VAR>x</VAR> with the elements rotated counterclockwise in
90-degree increments. The second argument is optional, and specifies
how many 90-degree rotations are to be applied (the default value is 1).
The third argument is also optional and defines the plane of the
rotation. As such <VAR>plane</VAR> is a two element vector containing two
different valid dimensions of the matrix. If <VAR>plane</VAR> is not given
Then the first two non-singleton dimensions are used.
<P>
Negative values of <VAR>n</VAR> rotate the matrix in a clockwise direction.
For example,
</P>
<P>
<TABLE><tr><td> </td><td class=example><pre>rotdim ([1, 2; 3, 4], -1, [1, 2])
=> 3 1
4 2
</pre></td></tr></table><P>
rotates the given matrix clockwise by 90 degrees. The following are all
equivalent statements:
</P>
<P>
<TABLE><tr><td> </td><td class=example><pre>rot90 ([1, 2; 3, 4], -1, [1, 2])
==
rot90 ([1, 2; 3, 4], 3, [1, 2])
==
rot90 ([1, 2; 3, 4], 7, [1, 2])
</pre></td></tr></table></DL>
<P>
<A NAME="doc-cat"></A>
<A NAME="IDX554"></A>
</P>
<DL>
<DT><U>Built-in Function:</U> <B>cat</B> <I>(<VAR>dim</VAR>, <VAR>array1</VAR>, <VAR>array2</VAR>, <small>...</small>, <VAR>arrayN</VAR>)</I>
<DD>Return the concatenation of N-d array objects, <VAR>array1</VAR>,
<VAR>array2</VAR>, <small>...</small>, <VAR>arrayN</VAR> along dimension <VAR>dim</VAR>.
<P>
<TABLE><tr><td> </td><td class=example><pre>A = ones (2, 2);
B = zeros (2, 2);
cat (2, A, B)
=> ans =
1 1 0 0
1 1 0 0
</pre></td></tr></table><P>
Alternatively, we can concatenate <VAR>A</VAR> and <VAR>B</VAR> along the
second dimension the following way:
</P>
<P>
<TABLE><tr><td> </td><td class=example><pre>[A, B].
</pre></td></tr></table><P>
<VAR>dim</VAR> can be larger than the dimensions of the N-d array objects
and the result will thus have <VAR>dim</VAR> dimensions as the
following example shows:
<TABLE><tr><td> </td><td class=example><pre>cat (4, ones(2, 2), zeros (2, 2))
=> ans =
ans(:,:,1,1) =
1 1
1 1
ans(:,:,1,2) =
0 0
0 0
</pre></td></tr></table><P>
</P>
</DL>
<P>
<A NAME="doc-horzcat"></A>
<A NAME="IDX555"></A>
</P>
<DL>
<DT><U>Built-in Function:</U> <B>horzcat</B> <I>(<VAR>array1</VAR>, <VAR>array2</VAR>, <small>...</small>, <VAR>arrayN</VAR>)</I>
<DD>Return the horizontal concatenation of N-d array objects, <VAR>array1</VAR>,
<VAR>array2</VAR>, <small>...</small>, <VAR>arrayN</VAR> along dimension 2.
</DL>
<P>
<A NAME="doc-vertcat"></A>
<A NAME="IDX556"></A>
</P>
<DL>
<DT><U>Built-in Function:</U> <B>vertcat</B> <I>(<VAR>array1</VAR>, <VAR>array2</VAR>, <small>...</small>, <VAR>arrayN</VAR>)</I>
<DD>Return the vertical concatenation of N-d array objects, <VAR>array1</VAR>,
<VAR>array2</VAR>, <small>...</small>, <VAR>arrayN</VAR> along dimension 1.
</DL>
<P>
<A NAME="doc-permute"></A>
<A NAME="IDX557"></A>
</P>
<DL>
<DT><U>Built-in Function:</U> <B>permute</B> <I>(<VAR>a</VAR>, <VAR>perm</VAR>)</I>
<DD>Return the generalized transpose for an N-d array object <VAR>a</VAR>.
The permutation vector <VAR>perm</VAR> must contain the elements
<CODE>1:ndims(a)</CODE> (in any order, but each element must appear just once).
<P>
</P>
</DL>
<P>
<A NAME="doc-ipermute"></A>
<A NAME="IDX558"></A>
</P>
<DL>
<DT><U>Built-in Function:</U> <B>ipermute</B> <I>(<VAR>a</VAR>, <VAR>iperm</VAR>)</I>
<DD>The inverse of the <CODE>permute</CODE> function. The expression
<P>
<TABLE><tr><td> </td><td class=example><pre>ipermute (permute (a, perm), perm)
</pre></td></tr></table>returns the original array <VAR>a</VAR>.
<P>
</P>
</DL>
<P>
<A NAME="doc-reshape"></A>
<A NAME="IDX559"></A>
</P>
<DL>
<DT><U>Function File:</U> <B>reshape</B> <I>(<VAR>a</VAR>, <VAR>m</VAR>, <VAR>n</VAR>, <small>...</small>)</I>
<DD><A NAME="IDX560"></A>
<DT><U>Function File:</U> <B>reshape</B> <I>(<VAR>a</VAR>, <VAR>siz</VAR>)</I>
<DD>Return a matrix with the given dimensions whose elements are taken
from the matrix <VAR>a</VAR>. The elements of the matrix are access in
column-major order (like Fortran arrays are stored).
<P>
For example,
</P>
<P>
<TABLE><tr><td> </td><td class=example><pre>reshape ([1, 2, 3, 4], 2, 2)
=> 1 3
2 4
</pre></td></tr></table><P>
Note that the total number of elements in the original
matrix must match the total number of elements in the new matrix.
</P>
<P>
A single dimension of the return matrix can be unknown and is flagged
by an empty argument.
</P>
</DL>
<P>
<A NAME="doc-circshift"></A>
<A NAME="IDX561"></A>
</P>
<DL>
<DT><U>Function File:</U> <VAR>y</VAR> <B>=</B> <I>circshift (<VAR>x</VAR>, <VAR>n</VAR>)</I>
<DD>Circularly shifts the values of the array <VAR>x</VAR>. <VAR>n</VAR> must be
a vector of integers no longer than the number of dimensions in
<VAR>x</VAR>. The values of <VAR>n</VAR> can be either positive or negative,
which determines the direction in which the values or <VAR>x</VAR> are
shifted. If an element of <VAR>n</VAR> is zero, then the corresponding
dimension of <VAR>x</VAR> will not be shifted. For example
<P>
<TABLE><tr><td> </td><td class=example><pre>x = [1, 2, 3; 4, 5, 6, 7, 8, 9];
circshift (x, 1)
=> 7, 8, 9
1, 2, 3
4, 5, 6
circshift (x, -2)
=> 7, 8, 9
1, 2, 3
4, 5, 6
circshift (x, [0,1])
=> 3, 1, 2
6, 4, 5
9, 7, 8
</pre></td></tr></table></DL>
<P>
<A NAME="doc-shiftdim"></A>
<A NAME="IDX562"></A>
</P>
<DL>
<DT><U>Function File:</U> <VAR>y</VAR> <B>=</B> <I>shiftdim (<VAR>x</VAR>, <VAR>n</VAR>)</I>
<DD><A NAME="IDX563"></A>
<DT><U>Function File:</U> [<VAR>y</VAR>, <VAR>ns</VAR>] <B>=</B> <I>shiftdim (<VAR>x</VAR>)</I>
<DD>Shifts the dimension of <VAR>x</VAR> by <VAR>n</VAR>, where <VAR>n</VAR> must be
an integer scalar. When <VAR>n</VAR> is negative, the dimensions of
<VAR>x</VAR> are shifted to the left, with the leading dimensions
circulated to the end. If <VAR>n</VAR> is positive, then the dimensions
of <VAR>x</VAR> are shifted to the right, with the <VAR>n</VAR> singleton
dimensions added.
<P>
Called with a single argument, <CODE>shiftdim</CODE>, removes the leading
singleton dimensions, returning the number of dimensions removed
in the second output argument <VAR>ns</VAR>.
</P>
<P>
For example
</P>
<P>
<TABLE><tr><td> </td><td class=example><pre>x = ones (1, 2, 3);
size (shiftdim (x, -1))
=> [2, 3, 1]
size (shiftdim (x, 1))
=> [1, 1, 2, 3]
[b, ns] = shiftdim (x);
=> b = [1, 1, 1; 1, 1, 1]
=> ns = 1
</pre></td></tr></table></DL>
<P>
<A NAME="doc-shift"></A>
<A NAME="IDX564"></A>
</P>
<DL>
<DT><U>Function File:</U> <B>shift</B> <I>(<VAR>x</VAR>, <VAR>b</VAR>)</I>
<DD><A NAME="IDX565"></A>
<DT><U>Function File:</U> <B>shift</B> <I>(<VAR>x</VAR>, <VAR>b</VAR>, <VAR>dim</VAR>)</I>
<DD>If <VAR>x</VAR> is a vector, perform a circular shift of length <VAR>b</VAR> of
the elements of <VAR>x</VAR>.
<P>
If <VAR>x</VAR> is a matrix, do the same for each column of <VAR>x</VAR>.
If the optional <VAR>dim</VAR> argument is given, operate along this
dimension
</P>
</DL>
<P>
<A NAME="doc-sort"></A>
<A NAME="IDX566"></A>
</P>
<DL>
<DT><U>Loadable Function:</U> [<VAR>s</VAR>, <VAR>i</VAR>] = <B>sort</B> <I>(<VAR>x</VAR>)</I>
<DD><A NAME="IDX567"></A>
<DT><U>Loadable Function:</U> [<VAR>s</VAR>, <VAR>i</VAR>] = <B>sort</B> <I>(<VAR>x</VAR>, <VAR>dim</VAR>)</I>
<DD><A NAME="IDX568"></A>
<DT><U>Loadable Function:</U> [<VAR>s</VAR>, <VAR>i</VAR>] = <B>sort</B> <I>(<VAR>x</VAR>, <VAR>mode</VAR>)</I>
<DD><A NAME="IDX569"></A>
<DT><U>Loadable Function:</U> [<VAR>s</VAR>, <VAR>i</VAR>] = <B>sort</B> <I>(<VAR>x</VAR>, <VAR>dim</VAR>, <VAR>mode</VAR>)</I>
<DD>Return a copy of <VAR>x</VAR> with the elements elements arranged in
increasing order. For matrices, <CODE>sort</CODE> orders the elements in each
column.
<P>
For example,
</P>
<P>
<TABLE><tr><td> </td><td class=example><pre>sort ([1, 2; 2, 3; 3, 1])
=> 1 1
2 2
3 3
</pre></td></tr></table><P>
The <CODE>sort</CODE> function may also be used to produce a matrix
containing the original row indices of the elements in the sorted
matrix. For example,
</P>
<P>
<TABLE><tr><td> </td><td class=example><pre>[s, i] = sort ([1, 2; 2, 3; 3, 1])
=> s = 1 1
2 2
3 3
=> i = 1 3
2 1
3 2
</pre></td></tr></table><P>
If the optional argument <VAR>dim</VAR> is given, then the matrix is sorted
along the dimension defined by <VAR>dim</VAR>. The optional argument <CODE>mode</CODE>
defines the order in which the values will be sorted. Valid values of
<CODE>mode</CODE> are `ascend' or `descend'.
</P>
<P>
For equal elements, the indices are such that the equal elements are listed
in the order that appeared in the original list.
</P>
<P>
The <CODE>sort</CODE> function may also be used to sort strings and cell arrays
of strings, it which case the dictionary order of the strings is used.
</P>
<P>
The algorithm used in <CODE>sort</CODE> is optimized for the sorting of partially
ordered lists.
</P>
</DL>
<P>
Since the <CODE>sort</CODE> function does not allow sort keys to be specified,
it can't be used to order the rows of a matrix according to the values
of the elements in various columns<A NAME="DOCF5" HREF="octave_fot.html#FOOT5">(5)</A>
in a single call. Using the second output, however, it is possible to
sort all rows based on the values in a given column. Here's an example
that sorts the rows of a matrix based on the values in the second
column.
</P>
<P>
<TABLE><tr><td> </td><td class=example><pre>a = [1, 2; 2, 3; 3, 1];
[s, i] = sort (a (:, 2));
a (i, :)
=> 3 1
1 2
2 3
</pre></td></tr></table><P>
<A NAME="doc-tril"></A>
<A NAME="IDX570"></A>
</P>
<DL>
<DT><U>Function File:</U> <B>tril</B> <I>(<VAR>a</VAR>, <VAR>k</VAR>)</I>
<DD><A NAME="IDX571"></A>
<DT><U>Function File:</U> <B>triu</B> <I>(<VAR>a</VAR>, <VAR>k</VAR>)</I>
<DD>Return a new matrix formed by extracting extract the lower (<CODE>tril</CODE>)
or upper (<CODE>triu</CODE>) triangular part of the matrix <VAR>a</VAR>, and
setting all other elements to zero. The second argument is optional,
and specifies how many diagonals above or below the main diagonal should
also be set to zero.
<P>
The default value of <VAR>k</VAR> is zero, so that <CODE>triu</CODE> and
<CODE>tril</CODE> normally include the main diagonal as part of the result
matrix.
</P>
<P>
If the value of <VAR>k</VAR> is negative, additional elements above (for
<CODE>tril</CODE>) or below (for <CODE>triu</CODE>) the main diagonal are also
selected.
</P>
<P>
The absolute value of <VAR>k</VAR> must not be greater than the number of
sub- or super-diagonals.
</P>
<P>
For example,
</P>
<P>
<TABLE><tr><td> </td><td class=example><pre>tril (ones (3), -1)
=> 0 0 0
1 0 0
1 1 0
</pre></td></tr></table><P>
and
</P>
<P>
<TABLE><tr><td> </td><td class=example><pre>tril (ones (3), 1)
=> 1 1 0
1 1 1
1 1 1
</pre></td></tr></table></DL>
<P>
<A NAME="doc-vec"></A>
<A NAME="IDX572"></A>
</P>
<DL>
<DT><U>Function File:</U> <B>vec</B> <I>(<VAR>x</VAR>)</I>
<DD>Return the vector obtained by stacking the columns of the matrix <VAR>x</VAR>
one above the other.
</DL>
<P>
<A NAME="doc-vech"></A>
<A NAME="IDX573"></A>
</P>
<DL>
<DT><U>Function File:</U> <B>vech</B> <I>(<VAR>x</VAR>)</I>
<DD>Return the vector obtained by eliminating all supradiagonal elements of
the square matrix <VAR>x</VAR> and stacking the result one column above the
other.
</DL>
<P>
<A NAME="doc-prepad"></A>
<A NAME="IDX574"></A>
</P>
<DL>
<DT><U>Function File:</U> <B>prepad</B> <I>(<VAR>x</VAR>, <VAR>l</VAR>, <VAR>c</VAR>)</I>
<DD><A NAME="IDX575"></A>
<DT><U>Function File:</U> <B>postpad</B> <I>(<VAR>x</VAR>, <VAR>l</VAR>, <VAR>c</VAR>)</I>
<DD><A NAME="IDX576"></A>
<DT><U>Function File:</U> <B>postpad</B> <I>(<VAR>x</VAR>, <VAR>l</VAR>, <VAR>c</VAR>, <VAR>dim</VAR>)</I>
<DD><P>
Prepends (appends) the scalar value <VAR>c</VAR> to the vector <VAR>x</VAR>
until it is of length <VAR>l</VAR>. If the third argument is not
supplied, a value of 0 is used.
</P>
<P>
If <CODE>length (<VAR>x</VAR>) > <VAR>l</VAR></CODE>, elements from the beginning (end) of
<VAR>x</VAR> are removed until a vector of length <VAR>l</VAR> is obtained.
</P>
<P>
If <VAR>x</VAR> is a matrix, elements are prepended or removed from each row.
</P>
<P>
If the optional <VAR>dim</VAR> argument is given, then operate along this
dimension.
</P>
</DL>
<P>
<A NAME="Special Utility Matrices"></A>
<HR SIZE="6">
<A NAME="SEC150"></A>
<TABLE CELLPADDING=1 CELLSPACING=1 BORDER=0>
<TR><TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="octave_19.html#SEC149"> < </A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="octave_19.html#SEC151"> > </A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT"> <TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="octave_19.html#SEC147"> << </A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="octave_19.html#SEC147"> Up </A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="octave_20.html#SEC152"> >> </A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT"> <TD VALIGN="MIDDLE" ALIGN="LEFT"> <TD VALIGN="MIDDLE" ALIGN="LEFT"> <TD VALIGN="MIDDLE" ALIGN="LEFT"> <TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="octave.html#SEC_Top">Top</A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="octave_toc.html#SEC_Contents">Contents</A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="octave_42.html#SEC245">Index</A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="octave_abt.html#SEC_About"> ? </A>]</TD>
</TR></TABLE>
<H2> 18.3 Special Utility Matrices </H2>
<!--docid::SEC150::-->
<P>
<A NAME="doc-eye"></A>
<A NAME="IDX577"></A>
</P>
<DL>
<DT><U>Built-in Function:</U> <B>eye</B> <I>(<VAR>x</VAR>)</I>
<DD><A NAME="IDX578"></A>
<DT><U>Built-in Function:</U> <B>eye</B> <I>(<VAR>n</VAR>, <VAR>m</VAR>)</I>
<DD><A NAME="IDX579"></A>
<DT><U>Built-in Function:</U> <B>eye</B> <I>(<small>...</small>, <VAR>class</VAR>)</I>
<DD>Return an identity matrix. If invoked with a single scalar argument,
<CODE>eye</CODE> returns a square matrix with the dimension specified. If you
supply two scalar arguments, <CODE>eye</CODE> takes them to be the number of
rows and columns. If given a vector with two elements, <CODE>eye</CODE> uses
the values of the elements as the number of rows and columns,
respectively. For example,
<P>
<TABLE><tr><td> </td><td class=example><pre>eye (3)
=> 1 0 0
0 1 0
0 0 1
</pre></td></tr></table><P>
The following expressions all produce the same result:
</P>
<P>
<TABLE><tr><td> </td><td class=example><pre>eye (2)
==
eye (2, 2)
==
eye (size ([1, 2; 3, 4])
</pre></td></tr></table><P>
The optional argument <VAR>class</VAR>, allows <CODE>eye</CODE> to return an array of
the specified type, like
</P>
<P>
<TABLE><tr><td> </td><td class=example><pre>val = zeros (n,m, "uint8")
</pre></td></tr></table><P>
For compatibility with MATLAB, calling <CODE>eye</CODE> with no arguments
is equivalent to calling it with an argument of 1.
</P>
</DL>
<P>
<A NAME="doc-ones"></A>
<A NAME="IDX580"></A>
</P>
<DL>
<DT><U>Built-in Function:</U> <B>ones</B> <I>(<VAR>x</VAR>)</I>
<DD><A NAME="IDX581"></A>
<DT><U>Built-in Function:</U> <B>ones</B> <I>(<VAR>n</VAR>, <VAR>m</VAR>)</I>
<DD><A NAME="IDX582"></A>
<DT><U>Built-in Function:</U> <B>ones</B> <I>(<VAR>n</VAR>, <VAR>m</VAR>, <VAR>k</VAR>, <small>...</small>)</I>
<DD><A NAME="IDX583"></A>
<DT><U>Built-in Function:</U> <B>ones</B> <I>(<small>...</small>, <VAR>class</VAR>)</I>
<DD>Return a matrix or N-dimensional array whose elements are all 1.
The arguments are handled the same as the arguments for <CODE>eye</CODE>.
<P>
If you need to create a matrix whose values are all the same, you should
use an expression like
</P>
<P>
<TABLE><tr><td> </td><td class=example><pre>val_matrix = val * ones (n, m)
</pre></td></tr></table><P>
The optional argument <VAR>class</VAR>, allows <CODE>ones</CODE> to return an array of
the specified type, like
</P>
<P>
<TABLE><tr><td> </td><td class=example><pre>val = ones (n,m, "uint8")
</pre></td></tr></table></DL>
<P>
<A NAME="doc-zeros"></A>
<A NAME="IDX584"></A>
</P>
<DL>
<DT><U>Built-in Function:</U> <B>zeros</B> <I>(<VAR>x</VAR>)</I>
<DD><A NAME="IDX585"></A>
<DT><U>Built-in Function:</U> <B>zeros</B> <I>(<VAR>n</VAR>, <VAR>m</VAR>)</I>
<DD><A NAME="IDX586"></A>
<DT><U>Built-in Function:</U> <B>zeros</B> <I>(<VAR>n</VAR>, <VAR>m</VAR>, <VAR>k</VAR>, <small>...</small>)</I>
<DD><A NAME="IDX587"></A>
<DT><U>Built-in Function:</U> <B>zeros</B> <I>(<small>...</small>, <VAR>class</VAR>)</I>
<DD>Return a matrix or N-dimensional array whose elements are all 0.
The arguments are handled the same as the arguments for <CODE>eye</CODE>.
<P>
The optional argument <VAR>class</VAR>, allows <CODE>zeros</CODE> to return an array of
the specified type, like
</P>
<P>
<TABLE><tr><td> </td><td class=example><pre>val = zeros (n,m, "uint8")
</pre></td></tr></table></DL>
<P>
<A NAME="doc-repmat"></A>
<A NAME="IDX588"></A>
</P>
<DL>
<DT><U>Function File:</U> <B>repmat</B> <I>(<VAR>A</VAR>, <VAR>m</VAR>, <VAR>n</VAR>)</I>
<DD><A NAME="IDX589"></A>
<DT><U>Function File:</U> <B>repmat</B> <I>(<VAR>A</VAR>, [<VAR>m</VAR> <VAR>n</VAR>])</I>
<DD>Form a block matrix of size <VAR>m</VAR> by <VAR>n</VAR>, with a copy of matrix
<VAR>A</VAR> as each element. If <VAR>n</VAR> is not specified, form an
<VAR>m</VAR> by <VAR>m</VAR> block matrix.
</DL>
<P>
<A NAME="doc-rand"></A>
<A NAME="IDX590"></A>
</P>
<DL>
<DT><U>Loadable Function:</U> <B>rand</B> <I>(<VAR>x</VAR>)</I>
<DD><A NAME="IDX591"></A>
<DT><U>Loadable Function:</U> <B>rand</B> <I>(<VAR>n</VAR>, <VAR>m</VAR>)</I>
<DD><A NAME="IDX592"></A>
<DT><U>Loadable Function:</U> <B>rand</B> <I>(<CODE>"seed"</CODE>, <VAR>x</VAR>)</I>
<DD>Return a matrix with random elements uniformly distributed on the
interval (0, 1). The arguments are handled the same as the arguments
for <CODE>eye</CODE>. In
addition, you can set the seed for the random number generator using the
form
<P>
<TABLE><tr><td> </td><td class=example><pre>rand ("seed", <VAR>x</VAR>)
</pre></td></tr></table><P>
where <VAR>x</VAR> is a scalar value. If called as
</P>
<P>
<TABLE><tr><td> </td><td class=example><pre>rand ("seed")
</pre></td></tr></table><P>
<CODE>rand</CODE> returns the current value of the seed.
</P>
</DL>
<P>
<A NAME="doc-randn"></A>
<A NAME="IDX593"></A>
</P>
<DL>
<DT><U>Loadable Function:</U> <B>randn</B> <I>(<VAR>x</VAR>)</I>
<DD><A NAME="IDX594"></A>
<DT><U>Loadable Function:</U> <B>randn</B> <I>(<VAR>n</VAR>, <VAR>m</VAR>)</I>
<DD><A NAME="IDX595"></A>
<DT><U>Loadable Function:</U> <B>randn</B> <I>(<CODE>"seed"</CODE>, <VAR>x</VAR>)</I>
<DD>Return a matrix with normally distributed random elements. The
arguments are handled the same as the arguments for <CODE>eye</CODE>. In
addition, you can set the seed for the random number generator using the
form
<P>
<TABLE><tr><td> </td><td class=example><pre>randn ("seed", <VAR>x</VAR>)
</pre></td></tr></table><P>
where <VAR>x</VAR> is a scalar value. If called as
</P>
<P>
<TABLE><tr><td> </td><td class=example><pre>randn ("seed")
</pre></td></tr></table><P>
<CODE>randn</CODE> returns the current value of the seed.
</P>
</DL>
<P>
The <CODE>rand</CODE> and <CODE>randn</CODE> functions use separate generators.
This ensures that
</P>
<P>
<TABLE><tr><td> </td><td class=example><pre>rand ("seed", 13);
randn ("seed", 13);
u = rand (100, 1);
n = randn (100, 1);
</pre></td></tr></table><P>
and
</P>
<P>
<TABLE><tr><td> </td><td class=example><pre>rand ("seed", 13);
randn ("seed", 13);
u = zeros (100, 1);
n = zeros (100, 1);
for i = 1:100
u(i) = rand ();
n(i) = randn ();
end
</pre></td></tr></table><P>
produce equivalent results.
</P>
<P>
Normally, <CODE>rand</CODE> and <CODE>randn</CODE> obtain their initial
seeds from the system clock, so that the sequence of random numbers is
not the same each time you run Octave. If you really do need for to
reproduce a sequence of numbers exactly, you can set the seed to a
specific value.
</P>
<P>
If it is invoked without arguments, <CODE>rand</CODE> and <CODE>randn</CODE> return a
single element of a random sequence.
</P>
<P>
The <CODE>rand</CODE> and <CODE>randn</CODE> functions use Fortran code from
RANLIB, a library of fortran routines for random number generation,
compiled by Barry W. Brown and James Lovato of the Department of
Biomathematics at The University of Texas, M.D. Anderson Cancer Center,
Houston, TX 77030.
</P>
<P>
<A NAME="doc-randperm"></A>
<A NAME="IDX596"></A>
</P>
<DL>
<DT><U>Function File:</U> <B>randperm</B> <I>(<VAR>n</VAR>)</I>
<DD>Return a row vector containing a random permutation of the
integers from 1 to <VAR>n</VAR>.
</DL>
<P>
<A NAME="doc-diag"></A>
<A NAME="IDX597"></A>
</P>
<DL>
<DT><U>Built-in Function:</U> <B>diag</B> <I>(<VAR>v</VAR>, <VAR>k</VAR>)</I>
<DD>Return a diagonal matrix with vector <VAR>v</VAR> on diagonal <VAR>k</VAR>. The
second argument is optional. If it is positive, the vector is placed on
the <VAR>k</VAR>-th super-diagonal. If it is negative, it is placed on the
<VAR>-k</VAR>-th sub-diagonal. The default value of <VAR>k</VAR> is 0, and the
vector is placed on the main diagonal. For example,
<P>
<TABLE><tr><td> </td><td class=example><pre>diag ([1, 2, 3], 1)
=> 0 1 0 0
0 0 2 0
0 0 0 3
0 0 0 0
</pre></td></tr></table></DL>
<P>
The functions <CODE>linspace</CODE> and <CODE>logspace</CODE> make it very easy to
create vectors with evenly or logarithmically spaced elements.
See section <A HREF="octave_5.html#SEC53">4.2 Ranges</A>.
</P>
<P>
<A NAME="doc-linspace"></A>
<A NAME="IDX598"></A>
</P>
<DL>
<DT><U>Built-in Function:</U> <B>linspace</B> <I>(<VAR>base</VAR>, <VAR>limit</VAR>, <VAR>n</VAR>)</I>
<DD>Return a row vector with <VAR>n</VAR> linearly spaced elements between
<VAR>base</VAR> and <VAR>limit</VAR>. The number of elements, <VAR>n</VAR>, must be
greater than 1. The <VAR>base</VAR> and <VAR>limit</VAR> are always included in
the range. If <VAR>base</VAR> is greater than <VAR>limit</VAR>, the elements are
stored in decreasing order. If the number of points is not specified, a
value of 100 is used.
<P>
The <CODE>linspace</CODE> function always returns a row vector.
</P>
</DL>
<P>
<A NAME="doc-logspace"></A>
<A NAME="IDX599"></A>
</P>
<DL>
<DT><U>Function File:</U> <B>logspace</B> <I>(<VAR>base</VAR>, <VAR>limit</VAR>, <VAR>n</VAR>)</I>
<DD>Similar to <CODE>linspace</CODE> except that the values are logarithmically
spaced from
10^base to 10^limit.
<P>
If <VAR>limit</VAR> is equal to
pi,
the points are between
10^base and pi,
<EM>not</EM>
10^base and 10^pi,
in order to be compatible with the corresponding MATLAB function.
</P>
</DL>
<P>
<A NAME="doc-warn_neg_dim_as_zero"></A>
<A NAME="IDX600"></A>
</P>
<DL>
<DT><U>Built-in Variable:</U> <B>warn_neg_dim_as_zero</B>
<DD>If the value of <CODE>warn_neg_dim_as_zero</CODE> is nonzero, print a warning
for expressions like
<P>
<TABLE><tr><td> </td><td class=example><pre>eye (-1)
</pre></td></tr></table><P>
The default value is 0.
</P>
</DL>
<P>
<A NAME="doc-warn_imag_to_real"></A>
<A NAME="IDX601"></A>
</P>
<DL>
<DT><U>Built-in Variable:</U> <B>warn_imag_to_real</B>
<DD>If the value of <CODE>warn_imag_to_real</CODE> is nonzero, a warning is
printed for implicit conversions of complex numbers to real numbers.
The default value is 0.
</DL>
<P>
<A NAME="Famous Matrices"></A>
<HR SIZE="6">
<A NAME="SEC151"></A>
<TABLE CELLPADDING=1 CELLSPACING=1 BORDER=0>
<TR><TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="octave_19.html#SEC150"> < </A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="octave_20.html#SEC152"> > </A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT"> <TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="octave_19.html#SEC147"> << </A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="octave_19.html#SEC147"> Up </A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="octave_20.html#SEC152"> >> </A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT"> <TD VALIGN="MIDDLE" ALIGN="LEFT"> <TD VALIGN="MIDDLE" ALIGN="LEFT"> <TD VALIGN="MIDDLE" ALIGN="LEFT"> <TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="octave.html#SEC_Top">Top</A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="octave_toc.html#SEC_Contents">Contents</A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="octave_42.html#SEC245">Index</A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="octave_abt.html#SEC_About"> ? </A>]</TD>
</TR></TABLE>
<H2> 18.4 Famous Matrices </H2>
<!--docid::SEC151::-->
<P>
The following functions return famous matrix forms.
</P>
<P>
<A NAME="doc-hankel"></A>
<A NAME="IDX602"></A>
</P>
<DL>
<DT><U>Function File:</U> <B>hankel</B> <I>(<VAR>c</VAR>, <VAR>r</VAR>)</I>
<DD>Return the Hankel matrix constructed given the first column <VAR>c</VAR>, and
(optionally) the last row <VAR>r</VAR>. If the last element of <VAR>c</VAR> is
not the same as the first element of <VAR>r</VAR>, the last element of
<VAR>c</VAR> is used. If the second argument is omitted, it is assumed to
be a vector of zeros with the same size as <VAR>c</VAR>.
<P>
A Hankel matrix formed from an m-vector <VAR>c</VAR>, and an n-vector
<VAR>r</VAR>, has the elements
</P>
<P>
<TABLE><tr><td> </td><td class=example><pre>H(i,j) = c(i+j-1), i+j-1 <= m;
H(i,j) = r(i+j-m), otherwise
</pre></td></tr></table></DL>
<P>
<A NAME="doc-hilb"></A>
<A NAME="IDX603"></A>
</P>
<DL>
<DT><U>Function File:</U> <B>hilb</B> <I>(<VAR>n</VAR>)</I>
<DD>Return the Hilbert matrix of order <VAR>n</VAR>. The
i, j
element of a Hilbert matrix is defined as
<P>
<TABLE><tr><td> </td><td class=example><pre>H (i, j) = 1 / (i + j - 1)
</pre></td></tr></table></DL>
<P>
<A NAME="doc-invhilb"></A>
<A NAME="IDX604"></A>
</P>
<DL>
<DT><U>Function File:</U> <B>invhilb</B> <I>(<VAR>n</VAR>)</I>
<DD>Return the inverse of a Hilbert matrix of order <VAR>n</VAR>. This can be
computed computed exactly using
<TABLE><tr><td> </td><td class=example><pre>
(i+j) /n+i-1\ /n+j-1\ /i+j-2\ 2
A(i,j) = -1 (i+j-1)( )( ) ( )
\ n-j / \ n-i / \ i-2 /
= p(i) p(j) / (i+j-1)
</pre></td></tr></table>where
<TABLE><tr><td> </td><td class=example><pre> k /k+n-1\ /n\
p(k) = -1 ( ) ( )
\ k-1 / \k/
</pre></td></tr></table><P>
The validity of this formula can easily be checked by expanding
the binomial coefficients in both formulas as factorials. It can
be derived more directly via the theory of Cauchy matrices:
see J. W. Demmel, Applied Numerical Linear Algebra, page 92.
</P>
<P>
Compare this with the numerical calculation of <CODE>inverse (hilb (n))</CODE>,
which suffers from the ill-conditioning of the Hilbert matrix, and the
finite precision of your computer's floating point arithmetic.
</P>
<P>
</P>
</DL>
<P>
<A NAME="doc-sylvester_matrix"></A>
<A NAME="IDX605"></A>
</P>
<DL>
<DT><U>Function File:</U> <B>sylvester_matrix</B> <I>(<VAR>k</VAR>)</I>
<DD>Return the Sylvester matrix of order
n = 2^k.
</DL>
<P>
<A NAME="doc-toeplitz"></A>
<A NAME="IDX606"></A>
</P>
<DL>
<DT><U>Function File:</U> <B>toeplitz</B> <I>(<VAR>c</VAR>, <VAR>r</VAR>)</I>
<DD>Return the Toeplitz matrix constructed given the first column <VAR>c</VAR>,
and (optionally) the first row <VAR>r</VAR>. If the first element of <VAR>c</VAR>
is not the same as the first element of <VAR>r</VAR>, the first element of
<VAR>c</VAR> is used. If the second argument is omitted, the first row is
taken to be the same as the first column.
<P>
A square Toeplitz matrix has the form:
</P>
<P>
<TABLE><tr><td> </td><td class=example><pre>c(0) r(1) r(2) ... r(n)
c(1) c(0) r(1) ... r(n-1)
c(2) c(1) c(0) ... r(n-2)
. , , . .
. , , . .
. , , . .
c(n) c(n-1) c(n-2) ... c(0)
</pre></td></tr></table></DL>
<P>
<A NAME="doc-vander"></A>
<A NAME="IDX607"></A>
</P>
<DL>
<DT><U>Function File:</U> <B>vander</B> <I>(<VAR>c</VAR>)</I>
<DD>Return the Vandermonde matrix whose next to last column is <VAR>c</VAR>.
<P>
A Vandermonde matrix has the form:
</P>
<P>
<TABLE><tr><td> </td><td class=example><pre>c(1)^(n-1) ... c(1)^2 c(1) 1
c(2)^(n-1) ... c(2)^2 c(2) 1
. . . . .
. . . . .
. . . . .
c(n)^(n-1) ... c(n)^2 c(n) 1
</pre></td></tr></table></DL>
<P>
<A NAME="Arithmetic"></A>
<HR SIZE="6">
<TABLE CELLPADDING=1 CELLSPACING=1 BORDER=0>
<TR><TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="octave_19.html#SEC147"> << </A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="octave_20.html#SEC152"> >> </A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT"> <TD VALIGN="MIDDLE" ALIGN="LEFT"> <TD VALIGN="MIDDLE" ALIGN="LEFT"> <TD VALIGN="MIDDLE" ALIGN="LEFT"> <TD VALIGN="MIDDLE" ALIGN="LEFT"> <TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="octave.html#SEC_Top">Top</A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="octave_toc.html#SEC_Contents">Contents</A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="octave_42.html#SEC245">Index</A>]</TD>
<TD VALIGN="MIDDLE" ALIGN="LEFT">[<A HREF="octave_abt.html#SEC_About"> ? </A>]</TD>
</TR></TABLE>
<BR>
<FONT SIZE="-1">
This document was generated
by <I>John W. Eaton</I> on <I>May, 18 2005</I>
using <A HREF="http://texi2html.cvshome.org"><I>texi2html</I></A>
</FONT>
</BODY>
</HTML>
|