1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
  
     | 
    
      @c DO NOT EDIT!  Generated automatically by munge-texi.
@c Copyright (C) 1996, 1997 John W. Eaton
@c This is part of the Octave manual.
@c For copying conditions, see the file gpl.texi.
@node Quaternions
@chapter Quaternions
Quaternions are hypercomplex numbers used to represent spatial
rotations in three dimensions.  This set of routines provides a useful
basis for working with quaternions in Octave.  A tutorial is in the
Octave source, scripts/quaternion/quaternion.ps.
These functions were written by A. S. Hodel, Associate Professor,
Auburn University.
@anchor{doc-quaternion}
@deftypefn {Function File} {[@var{a}, @var{b}, @var{c}, @var{d}] =} quaternion (w)
@deftypefnx {Function File} {[@var{vv}, @var{theta}] =} quaternion (w)
@deftypefnx {Function File} {@var{w} =} quaternion (@var{a}, @var{b}, @var{c}, @var{d})
@deftypefnx {Function File} {@var{w} =} quaternion (@var{vv}, @var{theta})
Construct or extract a quaternion
@example
w = a*i + b*j + c*k + d
@end example
@noindent
from given data.
@end deftypefn
@anchor{doc-qconj}
@deftypefn {Function File} {} qconj (@var{q})
Conjugate of a quaternion.
@example
q = [w, x, y, z] = w*i + x*j + y*k + z
qconj (q) = -w*i -x*j -y*k + z
@end example
@end deftypefn
@anchor{doc-qderiv}
@deftypefn {Function File} {} qderiv (omega)
Derivative of a quaternion.
Let Q be a quaternion to transform a vector from a fixed frame to
a rotating frame.  If the rotating frame is rotating about the 
[x, y, z] axes at angular rates [wx, wy, wz], then the derivative
of Q is given by
@example
Q' = qderivmat (omega) * Q
@end example
If the passive convention is used (rotate the frame, not the vector),
then
@example
Q' = -qderivmat (omega) * Q
@end example
@end deftypefn
@anchor{doc-qderivmat}
@deftypefn {Function File} {} qderivmat (@var{omega})
Derivative of a quaternion.
Let Q be a quaternion to transform a vector from a fixed frame to
a rotating frame.  If the rotating frame is rotating about the 
[x, y, z] axes at angular rates [wx, wy, wz], then the derivative
of Q is given by
@example
Q' = qderivmat (omega) * Q
@end example
If the passive convention is used (rotate the frame, not the vector),
then
@example
Q' = -qderivmat (omega) * Q.
@end example
@end deftypefn
@anchor{doc-qinv}
@deftypefn {Function File} {} qinv (@var{q})
Return the inverse of a quaternion.
@example
q = [w, x, y, z] = w*i + x*j + y*k + z
qmult (q, qinv (q)) = 1 = [0 0 0 1]
@end example
@end deftypefn
@anchor{doc-qmult}
@deftypefn {Function File} {} qmult (@var{a}, @var{b})
Multiply two quaternions.
@example
[w, x, y, z] = w*i + x*j + y*k + z
@end example
@noindent
identities:
@example
i^2 = j^2 = k^2 = -1
ij = k                 jk = i
ki = j                 kj = -i
ji = -k                ik = -j
@end example
@end deftypefn
@anchor{doc-qtrans}
@deftypefn {Function File} {} qtrans (@var{v}, @var{q})
Transform the unit quaternion @var{v} by the unit quaternion @var{q}.
Returns @code{@var{v} = @var{q}*@var{v}/@var{q}}.
@end deftypefn
@anchor{doc-qtransv}
@deftypefn {Function File} {} qtransv (@var{v}, @var{q})
Transform the 3-D vector @var{v} by the unit quaternion @var{q}.
Return a column vector.
@example
vi = (2*real(q)^2 - 1)*vb + 2*imag(q)*(imag(q)'*vb) 
   + 2*real(q)*cross(imag(q),vb)
@end example
@noindent
Where imag(q) is a column vector of length 3.
@end deftypefn
@anchor{doc-qtransvmat}
@deftypefn {Function File} {} qtransvmat (@var{qib})
Construct a 3x3 transformation matrix from quaternion @var{qib} that
is equivalent to rotation of th radians about axis @var{vv}, where
@code{[@var{vv}, @var{th}] = quaternion (@var{qib})}.
@end deftypefn
@anchor{doc-qcoordinate_plot}
@deftypefn {Function File} {} qcoordinate_plot (@var{qf}, @var{qb}, @var{qv})
Plot in the current figure a set of coordinate axes as viewed from 
the orientation specified by quaternion @var{qv}.  Inertial axes are
also plotted:
@table @var
@item qf
Quaternion from reference (x,y,z) to inertial.
@item qb
Quaternion from reference to body.
@item qv
Quaternion from reference to view angle.
@end table
@end deftypefn
 
     |