1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961
|
RANDLIB
Library of Fortran Routines for Random Number Generation
Full Documentation of Each Routine
Compiled and Written by:
Barry W. Brown
James Lovato
Department of Biomathematics, Box 237
The University of Texas, M.D. Anderson Cancer Center
1515 Holcombe Boulevard
Houston, TX 77030
This work was supported by grant CA-16672 from the National Cancer Institute.
C**********************************************************************
C
C SUBROUTINE ADVNST(K)
C ADV-a-N-ce ST-ate
C
C Advances the state of the current generator by 2^K values and
C resets the initial seed to that value.
C
C This is a transcription from Pascal to Fortran of routine
C Advance_State from the paper
C
C L'Ecuyer, P. and Cote, S. "Implementing a Random Number Package
C with Splitting Facilities." ACM Transactions on Mathematical
C Software, 17:98-111 (1991)
C
C
C Arguments
C
C
C K -> The generator is advanced by2^K values
C INTEGER K
C
C**********************************************************************
C**********************************************************************
C
C REAL FUNCTION GENBET( A, B )
C GeNerate BETa random deviate
C
C
C Function
C
C
C Returns a single random deviate from the beta distribution with
C parameters A and B. The density of the beta is
C x^(a-1) * (1-x)^(b-1) / B(a,b) for 0 < x < 1
C
C
C Arguments
C
C
C A --> First parameter of the beta distribution
C REAL A
C (A >= 1.0E-37)
C
C B --> Second parameter of the beta distribution
C REAL B
C (B >= 1.0E-37)
C
C
C Method
C
C
C R. C. H. Cheng
C Generating Beta Variables with Nonintegral Shape Parameters
C Communications of the ACM, 21:317-322 (1978)
C (Algorithms BB and BC)
C
C**********************************************************************
C**********************************************************************
C
C REAL FUNCTION GENCHI( DF )
C Generate random value of CHIsquare variable
C
C
C Function
C
C
C Generates random deviate from the distribution of a chisquare
C with DF degrees of freedom random variable.
C
C
C Arguments
C
C
C DF --> Degrees of freedom of the chisquare
C (Must be positive)
C REAL DF
C
C
C Method
C
C
C Uses relation between chisquare and gamma.
C
C**********************************************************************
C**********************************************************************
C
C REAL FUNCTION GENEXP( AV )
C
C GENerate EXPonential random deviate
C
C
C Function
C
C
C Generates a single random deviate from an exponential
C distribution with mean AV.
C
C
C Arguments
C
C
C AV --> The mean of the exponential distribution from which
C a random deviate is to be generated.
C REAL AV
C (AV >= 0)
C
C GENEXP <-- The random deviate.
C REAL GENEXP
C
C
C Method
C
C
C Renames SEXPO from TOMS as slightly modified by BWB to use RANF
C instead of SUNIF.
C
C For details see:
C
C Ahrens, J.H. and Dieter, U.
C Computer Methods for Sampling From the
C Exponential and Normal Distributions.
C Comm. ACM, 15,10 (Oct. 1972), 873 - 882.
C
C**********************************************************************
C**********************************************************************
C
C REAL FUNCTION GENF( DFN, DFD )
C GENerate random deviate from the F distribution
C
C
C Function
C
C
C Generates a random deviate from the F (variance ratio)
C distribution with DFN degrees of freedom in the numerator
C and DFD degrees of freedom in the denominator.
C
C
C Arguments
C
C
C DFN --> Numerator degrees of freedom
C (Must be positive)
C REAL DFN
C DFD --> Denominator degrees of freedom
C (Must be positive)
C REAL DFD
C
C
C Method
C
C
C Directly generates ratio of chisquare variates
C
C**********************************************************************
C**********************************************************************
C
C REAL FUNCTION GENGAM( A, R )
C GENerates random deviates from GAMma distribution
C
C
C Function
C
C
C Generates random deviates from the gamma distribution whose
C density is
C (A**R)/Gamma(R) * X**(R-1) * Exp(-A*X)
C
C
C Arguments
C
C
C A --> Location parameter of Gamma distribution
C REAL A ( A > 0 )
C
C R --> Shape parameter of Gamma distribution
C REAL R ( R > 0 )
C
C
C Method
C
C
C Renames SGAMMA from TOMS as slightly modified by BWB to use RANF
C instead of SUNIF.
C
C For details see:
C (Case R >= 1.0)
C Ahrens, J.H. and Dieter, U.
C Generating Gamma Variates by a
C Modified Rejection Technique.
C Comm. ACM, 25,1 (Jan. 1982), 47 - 54.
C Algorithm GD
C
C (Case 0.0 < R < 1.0)
C Ahrens, J.H. and Dieter, U.
C Computer Methods for Sampling from Gamma,
C Beta, Poisson and Binomial Distributions.
C Computing, 12 (1974), 223-246/
C Adapted algorithm GS.
C
C**********************************************************************
C**********************************************************************
C
C SUBROUTINE GENMN(PARM,X,WORK)
C GENerate Multivariate Normal random deviate
C
C
C Arguments
C
C
C PARM --> Parameters needed to generate multivariate normal
C deviates (MEANV and Cholesky decomposition of
C COVM). Set by a previous call to SETGMN.
C
C 1 : 1 - size of deviate, P
C 2 : P + 1 - mean vector
C P+2 : P*(P+3)/2 + 1 - upper half of cholesky
C decomposition of cov matrix
C REAL PARM(*)
C
C X <-- Vector deviate generated.
C REAL X(P)
C
C WORK <--> Scratch array
C REAL WORK(P)
C
C
C Method
C
C
C 1) Generate P independent standard normal deviates - Ei ~ N(0,1)
C
C 2) SETGMN uses Cholesky decomposition find A s.t. trans(A)*A = COV
C
C 3) Generate trans(A)*E + MEANV ~ N(MEANV,COVM)
C
C**********************************************************************
C**********************************************************************
C
C SUBROUTINE GENMUL( N, P, NCAT, IX )
C GENerate an observation from the MULtinomial distribution
C
C
C Arguments
C
C
C N --> Number of events that will be classified into one of
C the categories 1..NCAT
C INTEGER N
C (N >= 0)
C
C P --> Vector of probabilities. P(i) is the probability that
C an event will be classified into category i. Thus, P(i)
C must be [0,1]. Only the first NCAT-1 P(i) must be defined
C since P(NCAT) is 1.0 minus the sum of the first
C NCAT-1 P(i).
C REAL P(NCAT-1)
C
C NCAT --> Number of categories. Length of P and IX.
C INTEGER NCAT
C (NCAT > 1)
C
C IX <-- Observation from multinomial distribution. All IX(i)
C will be nonnegative and their sum will be N.
C INTEGER IX(NCAT)
C
C
C Method
C
C
C Algorithm from page 559 of
C
C Devroye, Luc
C
C Non-Uniform Random Variate Generation. Springer-Verlag,
C New York, 1986.
C
C**********************************************************************
C**********************************************************************
C
C REAL FUNCTION GENNCH( DF, XNONC )
C Generate random value of Noncentral CHIsquare variable
C
C
C Function
C
C
C
C Generates random deviate from the distribution of a noncentral
C chisquare with DF degrees of freedom and noncentrality parameter
C XNONC.
C
C
C Arguments
C
C
C DF --> Degrees of freedom of the chisquare
C (Must be >= 1.0)
C REAL DF
C
C XNONC --> Noncentrality parameter of the chisquare
C (Must be >= 0.0)
C REAL XNONC
C
C
C Method
C
C
C Uses fact that noncentral chisquare is the sum of a chisquare
C deviate with DF-1 degrees of freedom plus the square of a normal
C deviate with mean XNONC and standard deviation 1.
C
C**********************************************************************
C**********************************************************************
C
C REAL FUNCTION GENNF( DFN, DFD, XNONC )
C GENerate random deviate from the Noncentral F distribution
C
C
C Function
C
C
C Generates a random deviate from the noncentral F (variance ratio)
C distribution with DFN degrees of freedom in the numerator, and DFD
C degrees of freedom in the denominator, and noncentrality parameter
C XNONC.
C
C
C Arguments
C
C
C DFN --> Numerator degrees of freedom
C (Must be >= 1.0)
C REAL DFN
C DFD --> Denominator degrees of freedom
C (Must be positive)
C REAL DFD
C
C XNONC --> Noncentrality parameter
C (Must be nonnegative)
C REAL XNONC
C
C
C Method
C
C
C Directly generates ratio of noncentral numerator chisquare variate
C to central denominator chisquare variate.
C
C**********************************************************************
C**********************************************************************
C
C REAL FUNCTION GENNOR( AV, SD )
C
C GENerate random deviate from a NORmal distribution
C
C
C Function
C
C
C Generates a single random deviate from a normal distribution
C with mean, AV, and standard deviation, SD.
C
C
C Arguments
C
C
C AV --> Mean of the normal distribution.
C REAL AV
C
C SD --> Standard deviation of the normal distribution.
C REAL SD
C (SD >= 0)
C
C GENNOR <-- Generated normal deviate.
C REAL GENNOR
C
C
C Method
C
C
C Renames SNORM from TOMS as slightly modified by BWB to use RANF
C instead of SUNIF.
C
C For details see:
C Ahrens, J.H. and Dieter, U.
C Extensions of Forsythe's Method for Random
C Sampling from the Normal Distribution.
C Math. Comput., 27,124 (Oct. 1973), 927 - 937.
C
C
C**********************************************************************
C**********************************************************************
C
C SUBROUTINE GENPRM( IARRAY, LARRAY )
C GENerate random PeRMutation of iarray
C
C
C Arguments
C
C
C IARRAY <--> On output IARRAY is a random permutation of its
C value on input
C INTEGER IARRAY( LARRAY )
C
C LARRAY <--> Length of IARRAY
C INTEGER LARRAY
C
C**********************************************************************
C**********************************************************************
C
C REAL FUNCTION GENUNF( LOW, HIGH )
C
C GeNerate Uniform Real between LOW and HIGH
C
C
C Function
C
C
C Generates a real uniformly distributed between LOW and HIGH.
C
C
C Arguments
C
C
C LOW --> Low bound (exclusive) on real value to be generated
C REAL LOW
C
C HIGH --> High bound (exclusive) on real value to be generated
C REAL HIGH
C
C**********************************************************************
C**********************************************************************
C
C SUBROUTINE GETCGN(G)
C Get GeNerator
C
C Returns in G the number of the current random number generator
C
C
C Arguments
C
C
C G <-- Number of the current random number generator (1..32)
C INTEGER G
C
C**********************************************************************
C**********************************************************************
C
C SUBROUTINE GETSD(ISEED1,ISEED2)
C GET SeeD
C
C Returns the value of two integer seeds of the current generator
C
C This is a transcription from Pascal to Fortran of routine
C Get_State from the paper
C
C L'Ecuyer, P. and Cote, S. "Implementing a Random Number Package
C with Splitting Facilities." ACM Transactions on Mathematical
C Software, 17:98-111 (1991)
C
C
C Arguments
C
C
C
C ISEED1 <- First integer seed of generator G
C INTEGER ISEED1
C
C ISEED2 <- Second integer seed of generator G
C INTEGER ISEED1
C
C**********************************************************************
C**********************************************************************
C
C INTEGER FUNCTION IGNBIN( N, P )
C
C GENerate BINomial random deviate
C
C
C Function
C
C
C Generates a single random deviate from a binomial
C distribution whose number of trials is N and whose
C probability of an event in each trial is P.
C
C
C Arguments
C
C
C N --> The number of trials in the binomial distribution
C from which a random deviate is to be generated.
C INTEGER N
C (N >= 0)
C
C P --> The probability of an event in each trial of the
C binomial distribution from which a random deviate
C is to be generated.
C REAL P
C (0.0 <= P <= 1.0)
C
C IGNBIN <-- A random deviate yielding the number of events
C from N independent trials, each of which has
C a probability of event P.
C INTEGER IGNBIN
C
C
C Note
C
C
C Uses RANF so the value of the seeds, ISEED1 and ISEED2 must be set
C by a call similar to the following
C DUM = RANSET( ISEED1, ISEED2 )
C
C
C Method
C
C
C This is algorithm BTPE from:
C
C Kachitvichyanukul, V. and Schmeiser, B. W.
C
C Binomial Random Variate Generation.
C Communications of the ACM, 31, 2
C (February, 1988) 216.
C
C**********************************************************************
C**********************************************************************
C
C INTEGER FUNCTION IGNNBN( N, P )
C
C GENerate Negative BiNomial random deviate
C
C
C Function
C
C
C Generates a single random deviate from a negative binomial
C distribution.
C
C
C Arguments
C
C
C N --> Required number of events.
C INTEGER N
C (N > 0)
C
C P --> The probability of an event during a Bernoulli trial.
C REAL P
C (0.0 < P < 1.0)
C
C
C
C Method
C
C
C Algorithm from page 480 of
C
C Devroye, Luc
C
C Non-Uniform Random Variate Generation. Springer-Verlag,
C New York, 1986.
C
C**********************************************************************
C**********************************************************************
C
C INTEGER FUNCTION IGNLGI()
C GeNerate LarGe Integer
C
C Returns a random integer following a uniform distribution over
C (1, 2147483562) using the current generator.
C
C This is a transcription from Pascal to Fortran of routine
C Random from the paper
C
C L'Ecuyer, P. and Cote, S. "Implementing a Random Number Package
C with Splitting Facilities." ACM Transactions on Mathematical
C Software, 17:98-111 (1991)
C
C**********************************************************************
C**********************************************************************
C
C INTEGER FUNCTION IGNPOI( MU )
C
C GENerate POIsson random deviate
C
C
C Function
C
C
C Generates a single random deviate from a Poisson
C distribution with mean MU.
C
C
C Arguments
C
C
C MU --> The mean of the Poisson distribution from which
C a random deviate is to be generated.
C REAL MU
C (MU >= 0.0)
C
C IGNPOI <-- The random deviate.
C REAL IGNPOI (non-negative)
C
C
C Method
C
C
C Renames KPOIS from TOMS as slightly modified by BWB to use RANF
C instead of SUNIF.
C
C For details see:
C
C Ahrens, J.H. and Dieter, U.
C Computer Generation of Poisson Deviates
C From Modified Normal Distributions.
C ACM Trans. Math. Software, 8, 2
C (June 1982),163-179
C
C**********************************************************************
C**********************************************************************
C
C INTEGER FUNCTION IGNUIN( LOW, HIGH )
C
C GeNerate Uniform INteger
C
C
C Function
C
C
C Generates an integer uniformly distributed between LOW and HIGH.
C
C
C Arguments
C
C
C LOW --> Low bound (inclusive) on integer value to be generated
C INTEGER LOW
C
C HIGH --> High bound (inclusive) on integer value to be generated
C INTEGER HIGH
C
C
C Note
C
C
C If (HIGH-LOW) > 2,147,483,561 prints error message on * unit and
C stops the program.
C
C**********************************************************************
C**********************************************************************
C
C SUBROUTINE INITGN(ISDTYP)
C INIT-ialize current G-e-N-erator
C
C Reinitializes the state of the current generator
C ISDTYP = -1 => sets the state to its initial seed
C ISDTYP = 0 => sets the state to its last (previous) seed
C ISDTYP = 1 => sets the state to a new seed 2^w values
C from its last seed
C
C This is a transcription from Pascal to Fortran of routine
C Init_Generator from the paper
C
C L'Ecuyer, P. and Cote, S. "Implementing a Random Number Package
C with Splitting Facilities." ACM Transactions on Mathematical
C Software, 17:98-111 (1991)
C
C
C Arguments
C
C
C ISDTYP -> The state to which the generator is to be set
C
C INTEGER ISDTYP
C
C**********************************************************************
C**********************************************************************
C
C SUBROUTINE INRGCM()
C INitialize Random number Generator CoMmon
C
C
C Function
C
C
C Initializes common area for random number generator. This saves
C the nuisance of a BLOCK DATA routine and the difficulty of
C assuring that the routine is loaded with the other routines.
C
C**********************************************************************
C**********************************************************************
C
C INTEGER FUNCTION MLTMOD(A,S,M)
C
C Returns (A*S) MOD M
C
C This is a transcription from Pascal to Fortran of routine
C MULtMod_Decompos from the paper
C
C L'Ecuyer, P. and Cote, S. "Implementing a Random Number Package
C with Splitting Facilities." ACM Transactions on Mathematical
C Software, 17:98-111 (1991)
C
C
C Arguments
C
C
C A, S, M -->
C INTEGER A,S,M
C
C**********************************************************************
C**********************************************************************
C
C SUBROUTINE PHRTSD( PHRASE, SEED1, SEED2 )
C PHRase To SeeDs
C
C
C Function
C
C
C Uses a phrase (character string) to generate two seeds for the RGN
C random number generator.
C
C
C Arguments
C
C
C PHRASE --> Phrase to be used for random number generation
C CHARACTER*(*) PHRASE
C
C SEED1 <-- First seed for RGN generator
C INTEGER SEED1
C
C SEED2 <-- Second seed for RGN generator
C INTEGER SEED2
C
C
C Note
C
C
C Trailing blanks are eliminated before the seeds are generated.
C
C Generated seed values will fall in the range 1..2^30
C (1..1,073,741,824)
C
C**********************************************************************
C**********************************************************************
C
C REAL FUNCTION RANF()
C RANDom number generator as a Function
C
C Returns a random floating point number from a uniform distribution
C over 0 - 1 (endpoints of this interval are not returned) using the
C current generator
C
C This is a transcription from Pascal to Fortran of routine
C Uniform_01 from the paper
C
C L'Ecuyer, P. and Cote, S. "Implementing a Random Number Package
C with Splitting Facilities." ACM Transactions on Mathematical
C Software, 17:98-111 (1991)
C
C**********************************************************************
C**********************************************************************
C
C SUBROUTINE SETALL(ISEED1,ISEED2)
C SET ALL random number generators
C
C Sets the initial seed of generator 1 to ISEED1 and ISEED2. The
C initial seeds of the other generators are set accordingly, and
C all generators states are set to these seeds.
C
C This is a transcription from Pascal to Fortran of routine
C Set_Initial_Seed from the paper
C
C L'Ecuyer, P. and Cote, S. "Implementing a Random Number Package
C with Splitting Facilities." ACM Transactions on Mathematical
C Software, 17:98-111 (1991)
C
C
C Arguments
C
C
C ISEED1 -> First of two integer seeds
C INTEGER ISEED1
C
C ISEED2 -> Second of two integer seeds
C INTEGER ISEED1
C
C**********************************************************************
C**********************************************************************
C
C SUBROUTINE SETANT(QVALUE)
C SET ANTithetic
C
C Sets whether the current generator produces antithetic values. If
C X is the value normally returned from a uniform [0,1] random
C number generator then 1 - X is the antithetic value. If X is the
C value normally returned from a uniform [0,N] random number
C generator then N - 1 - X is the antithetic value.
C
C All generators are initialized to NOT generate antithetic values.
C
C This is a transcription from Pascal to Fortran of routine
C Set_Antithetic from the paper
C
C L'Ecuyer, P. and Cote, S. "Implementing a Random Number Package
C with Splitting Facilities." ACM Transactions on Mathematical
C Software, 17:98-111 (1991)
C
C
C Arguments
C
C
C QVALUE -> .TRUE. if generator G is to generating antithetic
C values, otherwise .FALSE.
C LOGICAL QVALUE
C
C**********************************************************************
C**********************************************************************
C
C SUBROUTINE SETCGN( G )
C Set GeNerator
C
C Sets the current generator to G. All references to a generato
C are to the current generator.
C
C
C Arguments
C
C
C G --> Number of the current random number generator (1..32)
C INTEGER G
C
C**********************************************************************
C**********************************************************************
C
C SUBROUTINE SETGMN( MEANV, COVM, LDCOVM, P, PARM)
C SET Generate Multivariate Normal random deviate
C
C
C Function
C
C
C Places P, MEANV, and the Cholesky factoriztion of COVM
C in PARM for GENMN.
C
C
C Arguments
C
C
C MEANV --> Mean vector of multivariate normal distribution.
C REAL MEANV(P)
C
C COVM <--> (Input) Covariance matrix of the multivariate
C normal distribution. This routine uses only the
C (1:P,1:P) slice of COVM, but needs to know LDCOVM.
C
C (Output) Destroyed on output
C REAL COVM(LDCOVM,P)
C
C LDCOVM --> Leading actual dimension of COVM.
C INTEGER LDCOVM
C
C P --> Dimension of the normal, or length of MEANV.
C INTEGER P
C
C PARM <-- Array of parameters needed to generate multivariate
C normal deviates (P, MEANV and Cholesky decomposition
C of COVM).
C 1 : 1 - P
C 2 : P + 1 - MEANV
C P+2 : P*(P+3)/2 + 1 - Cholesky decomposition of COVM
C REAL PARM(P*(P+3)/2 + 1)
C
C**********************************************************************
C**********************************************************************
C
C SUBROUTINE SETSD(ISEED1,ISEED2)
C SET S-ee-D of current generator
C
C Resets the initial seed and state of generator g to ISEED1 and
C ISEED2. The seeds and states of the other generators remain
C unchanged.
C
C This is a transcription from Pascal to Fortran of routine
C Set_Seed from the paper
C
C L'Ecuyer, P. and Cote, S. "Implementing a Random Number Package
C with Splitting Facilities." ACM Transactions on Mathematical
C Software, 17:98-111 (1991)
C
C
C Arguments
C
C
C ISEED1 -> First integer seed
C INTEGER ISEED1
C
C ISEED2 -> Second integer seed
C INTEGER ISEED1
C
C**********************************************************************
|