File: DASPK.cc

package info (click to toggle)
octave2.1 1%3A2.1.73-13
  • links: PTS
  • area: main
  • in suites: etch, etch-m68k
  • size: 37,028 kB
  • ctags: 20,874
  • sloc: cpp: 106,508; fortran: 46,978; ansic: 5,720; sh: 4,800; makefile: 3,186; yacc: 3,132; lex: 2,892; lisp: 1,715; perl: 778; awk: 174; exp: 134
file content (792 lines) | stat: -rw-r--r-- 17,560 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
/*

Copyright (C) 1996, 1997, 2002 John W. Eaton

This file is part of Octave.

Octave is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2, or (at your option) any
later version.

Octave is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with Octave; see the file COPYING.  If not, write to the Free
Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301, USA.

*/

#if defined (__GNUG__) && defined (USE_PRAGMA_INTERFACE_IMPLEMENTATION)
#pragma implementation
#endif

#ifdef HAVE_CONFIG_H
#include <config.h>
#endif

#include <cfloat>
#include <cmath>

#include "DASPK.h"
#include "f77-fcn.h"
#include "lo-error.h"
#include "lo-sstream.h"
#include "quit.h"

typedef int (*daspk_fcn_ptr) (const double&, const double*,
			      const double*, const double&,
			      double*, int&, double*, int*);

typedef int (*daspk_jac_ptr) (const double&, const double*,
			      const double*, double*,
			      const double&, double*, int*);

typedef int (*daspk_psol_ptr) (const int&, const double&,
			       const double*, const double*,
			       const double*, const double&,
			       const double*, double*, int*,
			       double*, const double&, int&,
			       double*, int*);

extern "C"
{
  F77_RET_T
  F77_FUNC (ddaspk, DDASPK) (daspk_fcn_ptr, const int&, double&,
			     double*, double*, double&, const int*,
			     const double*, const double*, int&,
			     double*, const int&, int*, const int&,
			     const double*, const int*,
			     daspk_jac_ptr, daspk_psol_ptr);
}

static DAEFunc::DAERHSFunc user_fun;
static DAEFunc::DAEJacFunc user_jac;
static int nn;

static int
ddaspk_f (const double& time, const double *state, const double *deriv,
	  const double&, double *delta, int& ires, double *, int *)
{
  BEGIN_INTERRUPT_WITH_EXCEPTIONS;

  ColumnVector tmp_deriv (nn);
  ColumnVector tmp_state (nn);
  ColumnVector tmp_delta (nn);

  for (int i = 0; i < nn; i++)
    {
      tmp_deriv.elem (i) = deriv [i];
      tmp_state.elem (i) = state [i];
    }

  tmp_delta = user_fun (tmp_state, tmp_deriv, time, ires);

  if (ires >= 0)
    {
      if (tmp_delta.length () == 0)
	ires = -2;
      else
	{
	  for (int i = 0; i < nn; i++)
	    delta [i] = tmp_delta.elem (i);
	}
    }

  END_INTERRUPT_WITH_EXCEPTIONS;

  return 0;
}

//NEQ, T, Y, YPRIME, SAVR, WK, CJ, WGHT,
//C                          WP, IWP, B, EPLIN, IER, RPAR, IPAR)

static int
ddaspk_psol (const int&, const double&, const double *,
	     const double *, const double *, const double&,
	     const double *, double *, int *, double *,
	     const double&, int&, double *, int*)
{
  BEGIN_INTERRUPT_WITH_EXCEPTIONS;

  abort ();

  END_INTERRUPT_WITH_EXCEPTIONS;

  return 0;
}


static int
ddaspk_j (const double& time, const double *state, const double *deriv,
	  double *pd, const double& cj, double *, int *)
{
  BEGIN_INTERRUPT_WITH_EXCEPTIONS;

  // XXX FIXME XXX -- would be nice to avoid copying the data.

  ColumnVector tmp_state (nn);
  ColumnVector tmp_deriv (nn);

  for (int i = 0; i < nn; i++)
    {
      tmp_deriv.elem (i) = deriv [i];
      tmp_state.elem (i) = state [i];
    }

  Matrix tmp_pd = user_jac (tmp_state, tmp_deriv, time, cj);

  for (int j = 0; j < nn; j++)
    for (int i = 0; i < nn; i++)
      pd [nn * j + i] = tmp_pd.elem (i, j);

  END_INTERRUPT_WITH_EXCEPTIONS;

  return 0;
}

ColumnVector
DASPK::do_integrate (double tout)
{
  // XXX FIXME XXX -- should handle all this option stuff just once
  // for each new problem.

  ColumnVector retval;

  if (! initialized || restart || DAEFunc::reset|| DASPK_options::reset)
    {
      integration_error = false;

      initialized = true;

      info.resize (20);

      for (int i = 0; i < 20; i++)
	info(i) = 0;

      pinfo = info.fortran_vec ();

      int n = size ();

      nn = n;

      info(0) = 0;

      if (stop_time_set)
	{
	  rwork(0) = stop_time;
	  info(3) = 1;
	}
      else
	info(3) = 0;

      px = x.fortran_vec ();
      pxdot = xdot.fortran_vec ();

      // DAEFunc

      user_fun = DAEFunc::function ();
      user_jac = DAEFunc::jacobian_function ();

      if (user_fun)
	{
	  int ires = 0;

	  ColumnVector res = (*user_fun) (x, xdot, t, ires);

	  if (res.length () != x.length ())
	    {
	      (*current_liboctave_error_handler)
		("daspk: inconsistent sizes for state and residual vectors");

	      integration_error = true;
	      return retval;
	    }
	}
      else
	{
	  (*current_liboctave_error_handler)
	    ("daspk: no user supplied RHS subroutine!");

	  integration_error = true;
	  return retval;
	}
  
      info(4) = user_jac ? 1 : 0;

      DAEFunc::reset = false;

      int eiq = enforce_inequality_constraints ();
      int ccic = compute_consistent_initial_condition ();
      int eavfet = exclude_algebraic_variables_from_error_test ();

      liw = 40 + n;
      if (eiq == 1 || eiq == 3)
	liw += n;
      if (ccic == 1 || eavfet == 1)
	liw += n;

      lrw = 50 + 9*n + n*n;
      if (eavfet == 1)
	lrw += n;

      iwork.resize (liw);
      rwork.resize (lrw);

      piwork = iwork.fortran_vec ();
      prwork = rwork.fortran_vec ();

      // DASPK_options

      abs_tol = absolute_tolerance ();
      rel_tol = relative_tolerance ();

      int abs_tol_len = abs_tol.length ();
      int rel_tol_len = rel_tol.length ();

      if (abs_tol_len == 1 && rel_tol_len == 1)
	{
	  info(1) = 0;
	}
      else if (abs_tol_len == n && rel_tol_len == n)
	{
	  info(1) = 1;
	}
      else
	{
	  (*current_liboctave_error_handler)
	    ("daspk: inconsistent sizes for tolerance arrays");

	  integration_error = true;
	  return retval;
	}

      pabs_tol = abs_tol.fortran_vec ();
      prel_tol = rel_tol.fortran_vec ();

      double hmax = maximum_step_size ();
      if (hmax >= 0.0)
	{
	  rwork(1) = hmax;
	  info(6) = 1;
	}
      else
	info(6) = 0;

      double h0 = initial_step_size ();
      if (h0 >= 0.0)
	{
	  rwork(2) = h0;
	  info(7) = 1;
	}
      else
	info(7) = 0;

      int maxord = maximum_order ();
      if (maxord >= 0)
	{
	  if (maxord > 0 && maxord < 6)
	    {
	      info(8) = 1;
	      iwork(2) = maxord;
	    }
	  else
	    {
	      (*current_liboctave_error_handler)
		("daspk: invalid value for maximum order");
	      integration_error = true;
	      return retval;
	    }
	}

      switch (eiq)
	{
	case 1:
	case 3:
	  {
	    Array<int> ict = inequality_constraint_types ();

	    if (ict.length () == n)
	      {
		for (int i = 0; i < n; i++)
		  {
		    int val = ict(i);
		    if (val < -2 || val > 2)
		      {
			(*current_liboctave_error_handler)
			  ("daspk: invalid value for inequality constraint type");
			integration_error = true;
			return retval;
		      }
		    iwork(40+i) = val;
		  }
	      }
	    else
	      {
		(*current_liboctave_error_handler)
		  ("daspk: inequality constraint types size mismatch");
		integration_error = true;
		return retval;
	      }
	  }
	  // Fall through...

	case 0:
	case 2:
	  info(9) = eiq;
	  break;

	default:
	  (*current_liboctave_error_handler)
	    ("daspk: invalid value for enforce inequality constraints option");
	  integration_error = true;
	  return retval;
	}

      if (ccic)
	{
	  if (ccic == 1)
	    {
	      // XXX FIXME XXX -- this code is duplicated below.

	      Array<int> av = algebraic_variables ();

	      if (av.length () == n)
		{
		  int lid;
		  if (eiq == 0 || eiq == 2)
		    lid = 40;
		  else if (eiq == 1 || eiq == 3)
		    lid = 40 + n;
		  else
		    abort ();

		  for (int i = 0; i < n; i++)
		    iwork(lid+i) = av(i) ? -1 : 1;
		}
	      else
		{
		  (*current_liboctave_error_handler)
		    ("daspk: algebraic variables size mismatch");
		  integration_error = true;
		  return retval;
		}
	    }
	  else if (ccic != 2)
	    {
	      (*current_liboctave_error_handler)
		("daspk: invalid value for compute consistent initial condition option");
	      integration_error = true;
	      return retval;
	    }

	  info(10) = ccic;
	}

      if (eavfet)
	{
	  info(15) = 1;

	  // XXX FIXME XXX -- this code is duplicated above.

	  Array<int> av = algebraic_variables ();

	  if (av.length () == n)
	    {
	      int lid;
	      if (eiq == 0 || eiq == 2)
		lid = 40;
	      else if (eiq == 1 || eiq == 3)
		lid = 40 + n;
	      else
		abort ();

	      for (int i = 0; i < n; i++)
		iwork(lid+i) = av(i) ? -1 : 1;
	    }
	}

      if (use_initial_condition_heuristics ())
	{
	  Array<double> ich = initial_condition_heuristics ();

	  if (ich.length () == 6)
	    {
	      iwork(31) = NINT (ich(0));
	      iwork(32) = NINT (ich(1));
	      iwork(33) = NINT (ich(2));
	      iwork(34) = NINT (ich(3));

	      rwork(13) = ich(4);
	      rwork(14) = ich(5);
	    }
	  else
	    {
	      (*current_liboctave_error_handler)
		("daspk: invalid initial condition heuristics option");
	      integration_error = true;
	      return retval;
	    }

	  info(16) = 1;
	}

      int pici = print_initial_condition_info ();
      switch (pici)
	{
	case 0:
	case 1:
	case 2:
	  info(17) = pici;
	  break;

	default:
	  (*current_liboctave_error_handler)
	    ("daspk: invalid value for print initial condition info option");
	  integration_error = true;
	  return retval;
	  break;
	}

      DASPK_options::reset = false;

      restart = false;
    }

  static double *dummy = 0;
  static int *idummy = 0;

  F77_XFCN (ddaspk, DDASPK, (ddaspk_f, nn, t, px, pxdot, tout, pinfo,
			     prel_tol, pabs_tol, istate, prwork, lrw,
			     piwork, liw, dummy, idummy, ddaspk_j,
			     ddaspk_psol));

  if (f77_exception_encountered)
    {
      integration_error = true;
      (*current_liboctave_error_handler) ("unrecoverable error in daspk");
    }
  else
    {
      switch (istate)
	{
	case 1: // A step was successfully taken in intermediate-output
	        // mode. The code has not yet reached TOUT.
	case 2: // The integration to TSTOP was successfully completed
	        // (T=TSTOP) by stepping exactly to TSTOP.
	case 3: // The integration to TOUT was successfully completed
	        // (T=TOUT) by stepping past TOUT.  Y(*) is obtained by
	        // interpolation.  YPRIME(*) is obtained by interpolation.
	case 4: // The initial condition calculation, with
                // INFO(11) > 0, was successful, and INFO(14) = 1.
                // No integration steps were taken, and the solution
                // is not considered to have been started.
	  retval = x;
	  t = tout;
	  break;

	case -1: // A large amount of work has been expended.  (~500 steps).
	case -2: // The error tolerances are too stringent.
	case -3: // The local error test cannot be satisfied because you
	         // specified a zero component in ATOL and the
		 // corresponding computed solution component is zero.
		 // Thus, a pure relative error test is impossible for
		 // this component.
	case -6: // DDASPK had repeated error test failures on the last
		 // attempted step.
	case -7: // The corrector could not converge.
	case -8: // The matrix of partial derivatives is singular.
	case -9: // The corrector could not converge.  There were repeated
		 // error test failures in this step.
	case -10: // The corrector could not converge because IRES was
		  // equal to minus one.
	case -11: // IRES equal to -2 was encountered and control is being
		  // returned to the calling program.
	case -12: // DDASPK failed to compute the initial YPRIME.
	case -13: // Unrecoverable error encountered inside user's
                  // PSOL routine, and control is being returned to
                  // the calling program.
	case -14: // The Krylov linear system solver could not
                  // achieve convergence.
	case -33: // The code has encountered trouble from which it cannot
		  // recover. A message is printed explaining the trouble
		  // and control is returned to the calling program. For
		  // example, this occurs when invalid input is detected.
	  integration_error = true;
	  break;

	default:
	  integration_error = true;
	  (*current_liboctave_error_handler)
	    ("unrecognized value of istate (= %d) returned from ddaspk",
	     istate);
	  break;
	}
    }

  return retval;
}

Matrix
DASPK::do_integrate (const ColumnVector& tout)
{
  Matrix dummy;
  return integrate (tout, dummy);
}

Matrix
DASPK::integrate (const ColumnVector& tout, Matrix& xdot_out)
{
  Matrix retval;

  int n_out = tout.capacity ();
  int n = size ();

  if (n_out > 0 && n > 0)
    {
      retval.resize (n_out, n);
      xdot_out.resize (n_out, n);

      for (int i = 0; i < n; i++)
	{
	  retval.elem (0, i) = x.elem (i);
	  xdot_out.elem (0, i) = xdot.elem (i);
	}

      for (int j = 1; j < n_out; j++)
	{
	  ColumnVector x_next = do_integrate (tout.elem (j));

	  if (integration_error)
	    return retval;

	  for (int i = 0; i < n; i++)
	    {
	      retval.elem (j, i) = x_next.elem (i);
	      xdot_out.elem (j, i) = xdot.elem (i);
	    }
	}
    }

  return retval;
}

Matrix
DASPK::do_integrate (const ColumnVector& tout, const ColumnVector& tcrit)
{
  Matrix dummy;
  return integrate (tout, dummy, tcrit);
}

Matrix
DASPK::integrate (const ColumnVector& tout, Matrix& xdot_out,
		  const ColumnVector& tcrit) 
{
  Matrix retval;

  int n_out = tout.capacity ();
  int n = size ();

  if (n_out > 0 && n > 0)
    {
      retval.resize (n_out, n);
      xdot_out.resize (n_out, n);

      for (int i = 0; i < n; i++)
	{
	  retval.elem (0, i) = x.elem (i);
	  xdot_out.elem (0, i) = xdot.elem (i);
	}

      int n_crit = tcrit.capacity ();

      if (n_crit > 0)
	{
	  int i_crit = 0;
	  int i_out = 1;
	  double next_crit = tcrit.elem (0);
	  double next_out;
	  while (i_out < n_out)
	    {
	      bool do_restart = false;

	      next_out = tout.elem (i_out);
	      if (i_crit < n_crit)
		next_crit = tcrit.elem (i_crit);

	      bool save_output;
	      double t_out;

	      if (next_crit == next_out)
		{
		  set_stop_time (next_crit);
		  t_out = next_out;
		  save_output = true;
		  i_out++;
		  i_crit++;
		  do_restart = true;
		}
	      else if (next_crit < next_out)
		{
		  if (i_crit < n_crit)
		    {
		      set_stop_time (next_crit);
		      t_out = next_crit;
		      save_output = false;
		      i_crit++;
		      do_restart = true;
		    }
		  else
		    {
		      clear_stop_time ();
		      t_out = next_out;
		      save_output = true;
		      i_out++;
		    }
		}
	      else
		{
		  set_stop_time (next_crit);
		  t_out = next_out;
		  save_output = true;
		  i_out++;
		}

	      ColumnVector x_next = do_integrate (t_out);

	      if (integration_error)
		return retval;

	      if (save_output)
		{
		  for (int i = 0; i < n; i++)
		    {
		      retval.elem (i_out-1, i) = x_next.elem (i);
		      xdot_out.elem (i_out-1, i) = xdot.elem (i);
		    }
		}

	      if (do_restart)
		force_restart ();
	    }
	}
      else
	{
	  retval = integrate (tout, xdot_out);

	  if (integration_error)
	    return retval;
	}
    }

  return retval;
}

std::string
DASPK::error_message (void) const
{
  std::string retval;

  OSSTREAM buf;
  buf << t << OSSTREAM_ENDS;
  std::string t_curr = OSSTREAM_STR (buf);
  OSSTREAM_FREEZE (buf);

  switch (istate)
    {
    case 1:
      retval = "a step was successfully taken in intermediate-output mode.";
      break;

    case 2:
      retval = "integration completed by stepping exactly to TOUT";
      break;

    case 3:
      retval = "integration to tout completed by stepping past TOUT";
      break;

    case 4:
      retval = "initial condition calculation completed successfully";
      break;

    case -1:
      retval = std::string ("a large amount of work has been expended (t =")
	+ t_curr + ")";
      break;

    case -2:
      retval = "the error tolerances are too stringent";
      break;

    case -3:
      retval = std::string ("error weight became zero during problem. (t = ")
	+ t_curr
	+ "; solution component i vanished, and atol or atol(i) == 0)";
      break;

    case -6:
      retval = std::string ("repeated error test failures on the last attempted step (t = ")
	+ t_curr + ")";
      break;

    case -7:
      retval = std::string ("the corrector could not converge (t = ")
	+ t_curr + ")";
      break;

    case -8:
      retval = std::string ("the matrix of partial derivatives is singular (t = ")
	+ t_curr + ")";
      break;

    case -9:
      retval = std::string ("the corrector could not converge (t = ")
	+ t_curr + "; repeated test failures)";
      break;

    case -10:
      retval = std::string ("corrector could not converge because IRES was -1 (t = ")
	+ t_curr + ")";
      break;

    case -11:
      retval = std::string ("return requested in user-supplied function (t = ")
	+ t_curr + ")";
      break;

    case -12:
      retval = "failed to compute consistent initial conditions";
      break;

    case -13:
      retval = std::string ("unrecoverable error encountered inside user's PSOL function (t = ")
	+ t_curr + ")";
      break;

    case -14:
      retval = std::string ("the Krylov linear system solver failed to converge (t = ")
	+ t_curr + ")";
      break;

    case -33:
      retval = "unrecoverable error (see printed message)";
      break;

    default:
      retval = "unknown error state";
      break;
    }

  return retval;
}

/*
;;; Local Variables: ***
;;; mode: C++ ***
;;; End: ***
*/