1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
|
// DO NOT EDIT!
// Generated automatically from DASSL-opts.in.
#if !defined (octave_DASSL_options_h)
#define octave_DASSL_options_h 1
#include <cfloat>
#include <cmath>
#include <DAE.h>
class
DASSL_options
{
public:
DASSL_options (void) { init (); }
DASSL_options (const DASSL_options& opt) { copy (opt); }
DASSL_options& operator = (const DASSL_options& opt)
{
if (this != &opt)
copy (opt);
return *this;
}
~DASSL_options (void) { }
void init (void)
{
x_absolute_tolerance.resize (1);
x_absolute_tolerance(0) = ::sqrt (DBL_EPSILON);
x_relative_tolerance.resize (1);
x_relative_tolerance(0) = ::sqrt (DBL_EPSILON);
x_initial_step_size = -1.0;
x_maximum_order = -1;
x_maximum_step_size = -1.0;
x_step_limit = -1;
reset = true;
}
void copy (const DASSL_options& opt)
{
x_absolute_tolerance = opt.x_absolute_tolerance;
x_relative_tolerance = opt.x_relative_tolerance;
x_compute_consistent_initial_condition = opt.x_compute_consistent_initial_condition;
x_enforce_nonnegativity_constraints = opt.x_enforce_nonnegativity_constraints;
x_initial_step_size = opt.x_initial_step_size;
x_maximum_order = opt.x_maximum_order;
x_maximum_step_size = opt.x_maximum_step_size;
x_step_limit = opt.x_step_limit;
reset = opt.reset;
}
void set_options (const DASSL_options& opt) { copy (opt); }
void set_default_options (void) { init (); }
void set_absolute_tolerance (double val)
{
x_absolute_tolerance.resize (1);
x_absolute_tolerance(0) = (val > 0.0) ? val : ::sqrt (DBL_EPSILON);
reset = true;
}
void set_absolute_tolerance (const Array<double>& val)
{ x_absolute_tolerance = val; reset = true; }
void set_relative_tolerance (double val)
{
x_relative_tolerance.resize (1);
x_relative_tolerance(0) = (val > 0.0) ? val : ::sqrt (DBL_EPSILON);
reset = true;
}
void set_relative_tolerance (const Array<double>& val)
{ x_relative_tolerance = val; reset = true; }
void set_compute_consistent_initial_condition (int val)
{ x_compute_consistent_initial_condition = val; reset = true; }
void set_enforce_nonnegativity_constraints (int val)
{ x_enforce_nonnegativity_constraints = val; reset = true; }
void set_initial_step_size (double val)
{ x_initial_step_size = (val >= 0.0) ? val : -1.0; reset = true; }
void set_maximum_order (int val)
{ x_maximum_order = val; reset = true; }
void set_maximum_step_size (double val)
{ x_maximum_step_size = (val >= 0.0) ? val : -1.0; reset = true; }
void set_step_limit (int val)
{ x_step_limit = (val >= 0) ? val : -1; reset = true; }
Array<double> absolute_tolerance (void) const
{ return x_absolute_tolerance; }
Array<double> relative_tolerance (void) const
{ return x_relative_tolerance; }
int compute_consistent_initial_condition (void) const
{ return x_compute_consistent_initial_condition; }
int enforce_nonnegativity_constraints (void) const
{ return x_enforce_nonnegativity_constraints; }
double initial_step_size (void) const
{ return x_initial_step_size; }
int maximum_order (void) const
{ return x_maximum_order; }
double maximum_step_size (void) const
{ return x_maximum_step_size; }
int step_limit (void) const
{ return x_step_limit; }
private:
Array<double> x_absolute_tolerance;
Array<double> x_relative_tolerance;
int x_compute_consistent_initial_condition;
int x_enforce_nonnegativity_constraints;
double x_initial_step_size;
int x_maximum_order;
double x_maximum_step_size;
int x_step_limit;
protected:
bool reset;
};
#endif
|