1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
|
CLASS = "DASSL"
INCLUDE = "DAE.h"
OPTION
NAME = "absolute tolerance"
DOC_ITEM
Absolute tolerance. May be either vector or scalar. If a vector, it
must match the dimension of the state vector, and the relative
tolerance must also be a vector of the same length.
END_DOC_ITEM
TYPE = "Array<double>"
SET_ARG_TYPE = "const $TYPE&"
INIT_BODY
$OPTVAR.resize (1);
$OPTVAR(0) = ::sqrt (DBL_EPSILON);
END_INIT_BODY
SET_CODE
void set_$OPT (double val)
{
$OPTVAR.resize (1);
$OPTVAR(0) = (val > 0.0) ? val : ::sqrt (DBL_EPSILON);
reset = true;
}
void set_$OPT (const $TYPE& val)
{ $OPTVAR = val; reset = true; }
END_SET_CODE
END_OPTION
OPTION
NAME = "relative tolerance"
DOC_ITEM
Relative tolerance. May be either vector or scalar. If a vector, it
must match the dimension of the state vector, and the absolute
tolerance must also be a vector of the same length.
The local error test applied at each integration step is
@example
abs (local error in x(i))
<= rtol(i) * abs (Y(i)) + atol(i)
@end example
END_DOC_ITEM
TYPE = "Array<double>"
SET_ARG_TYPE = "const $TYPE&"
INIT_BODY
$OPTVAR.resize (1);
$OPTVAR(0) = ::sqrt (DBL_EPSILON);
END_INIT_BODY
SET_CODE
void set_$OPT (double val)
{
$OPTVAR.resize (1);
$OPTVAR(0) = (val > 0.0) ? val : ::sqrt (DBL_EPSILON);
reset = true;
}
void set_$OPT (const $TYPE& val)
{ $OPTVAR = val; reset = true; }
END_SET_CODE
END_OPTION
OPTION
NAME = "compute consistent initial condition"
DOC_ITEM
If nonzero, @code{dassl} will attempt to compute a consistent set of intial
conditions. This is generally not reliable, so it is best to provide
a consistent set and leave this option set to zero.
END_DOC_ITEM
TYPE = "int"
INIT_VALUE = "0"
SET_EXPR = "val"
END_OPTION
OPTION
NAME = "enforce nonnegativity constraints"
DOC_ITEM
If you know that the solutions to your equations will always be
nonnegative, it may help to set this parameter to a nonzero
value. However, it is probably best to try leaving this option set to
zero first, and only setting it to a nonzero value if that doesn't
work very well.
END_DOC_ITEM
TYPE = "int"
INIT_VALUE = "0"
SET_EXPR = "val"
END_OPTION
OPTION
NAME = "initial step size"
DOC_ITEM
Differential-algebraic problems may occaisionally suffer from severe
scaling difficulties on the first step. If you know a great deal
about the scaling of your problem, you can help to alleviate this
problem by specifying an initial stepsize.
END_DOC_ITEM
TYPE = "double"
INIT_VALUE = "-1.0"
SET_EXPR = "(val >= 0.0) ? val : -1.0"
END_OPTION
OPTION
NAME = "maximum order"
DOC_ITEM
Restrict the maximum order of the solution method. This option must
be between 1 and 5, inclusive.
END_DOC_ITEM
TYPE = "int"
INIT_VALUE = "-1"
SET_EXPR = "val"
END_OPTION
OPTION
NAME = "maximum step size"
DOC_ITEM
Setting the maximum stepsize will avoid passing over very large
regions (default is not specified).
END_DOC_ITEM
TYPE = "double"
INIT_VALUE = "-1.0"
SET_EXPR = "(val >= 0.0) ? val : -1.0"
END_OPTION
OPTION
NAME = "step limit"
DOC_ITEM
Maximum number of integration steps to attempt on a single call to the
underlying Fortran code.
END_DOC_ITEM
TYPE = "int"
INIT_VALUE = "-1"
SET_EXPR = "(val >= 0) ? val : -1"
END_OPTION
|