File: oct-fftw.cc

package info (click to toggle)
octave2.1 1%3A2.1.73-13
  • links: PTS
  • area: main
  • in suites: etch, etch-m68k
  • size: 37,028 kB
  • ctags: 20,874
  • sloc: cpp: 106,508; fortran: 46,978; ansic: 5,720; sh: 4,800; makefile: 3,186; yacc: 3,132; lex: 2,892; lisp: 1,715; perl: 778; awk: 174; exp: 134
file content (486 lines) | stat: -rw-r--r-- 11,723 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
/*

This file is part of Octave.

Octave is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2, or (at your option) any
later version.

Octave is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with Octave; see the file COPYING.  If not, write to the Free
Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301, USA.

*/

#ifdef HAVE_CONFIG_H
#include <config.h>
#endif

#if defined (HAVE_FFTW3)

#include <iostream>
#include <vector>

#include "lo-error.h"
#include "oct-fftw.h"
#include "quit.h"

// Helper class to create and cache fftw plans for both 1d and
// 2d. This implementation uses FFTW_ESTIMATE to create the plans,
// which in theory is suboptimal, but provides quite reasonable
// performance.

// Also note that if FFTW_ESTIMATE is not used the planner in FFTW3
// destroys the input and output arrays. So with the form of the
// current code we definitely want FFTW_ESTIMATE!! However, we use any
// wsidom that is available, either in a FFTW3 system wide file or as
// supplied by the user.

// XXX FIXME XXX -- if we can ensure 16 byte alignment in Array<T>
// (<T> *data) the FFTW3 can use SIMD instructions for further
// acceleration.

// Note that it is profitable to store the FFTW3 plans, for small
// ffts.

class
octave_fftw_planner
{
public:

  octave_fftw_planner (void);

  fftw_plan create_plan (int dir, const int rank, const dim_vector dims, 
			 int howmany, int stride, int dist, 
			 const Complex *in, Complex *out);

  fftw_plan create_plan (const int rank, const dim_vector dims, 
			 int howmany, int stride, int dist, 
			 const double *in, Complex *out);

private:

  int plan_flags;

  // XXX FIXME XXX -- perhaps this should be split into two classes?

  // Plan for fft and ifft of complex values
  fftw_plan plan[2];

  // dist
  int d[2];

  // stride
  int s[2];

  // rank
  int r[2];

  // howmany
  int h[2];

  // dims
  dim_vector n[2];

  bool simd_align[2];
  bool inplace[2];

  // Plan for fft of real values
  fftw_plan rplan;

  // dist
  int rd;

  // stride
  int rs;

  // rank
  int rr;

  // howmany
  int rh;

  // dims
  dim_vector rn;

  bool rsimd_align;
};

octave_fftw_planner::octave_fftw_planner (void)
{
  plan_flags = FFTW_ESTIMATE;

  plan[0] = plan[1] = 0;
  d[0] = d[1] = s[0] = s[1] = r[0] = r[1] = h[0] = h[1] = 0;
  simd_align[0] = simd_align[1] = false;
  inplace[0] = inplace[1] = false;
  n[0] = n[1] = dim_vector ();

  rplan = 0;
  rd = rs = rr = rh = 0;
  rsimd_align = false;
  rn = dim_vector ();
  
  // If we have a system wide wisdom file, import it.
  fftw_import_system_wisdom ();
}

#define CHECK_SIMD_ALIGNMENT(x) \
  ((reinterpret_cast<ptrdiff_t> (x)) & 0xF == 0)

fftw_plan
octave_fftw_planner::create_plan (int dir, const int rank,
				  const dim_vector dims, int howmany,
				  int stride, int dist, 
				  const Complex *in, Complex *out)
{
  int which = (dir == FFTW_FORWARD) ? 0 : 1;
  fftw_plan *cur_plan_p = &plan[which];
  bool create_new_plan = false;
  bool ioalign = CHECK_SIMD_ALIGNMENT (in) && CHECK_SIMD_ALIGNMENT (out);
  bool ioinplace = (in == out);

  // Don't create a new plan if we have a non SIMD plan already but
  // can do SIMD.  This prevents endlessly recreating plans if we
  // change the alignment.

  if (plan[which] == 0 || d[which] != dist || s[which] != stride
      || r[which] != rank || h[which] != howmany 
      || ioinplace != inplace[which]
      || ((ioalign != simd_align[which]) ? !ioalign : false))
    create_new_plan = true;
  else
    {
      // We still might not have the same shape of array.

      for (int i = 0; i < rank; i++)
	if (dims(i) != n[which](i))
	  {
	    create_new_plan = true;
	    break;
	  }
    }

  if (create_new_plan)
    {
      d[which] = dist;
      s[which] = stride;
      r[which] = rank;
      h[which] = howmany;
      simd_align[which] = ioalign;
      inplace[which] = ioinplace;
      n[which] = dims;

      if (ioalign)
	plan_flags &= ~FFTW_UNALIGNED;
      else
	plan_flags |= FFTW_UNALIGNED;

      if (*cur_plan_p)
	fftw_destroy_plan (*cur_plan_p);

      // Note reversal of dimensions for column major storage in FFTW.

      OCTAVE_LOCAL_BUFFER (int, tmp, rank);

      for (int i = 0, j = rank-1; i < rank; i++, j--)
	tmp[i] = dims(j);

      *cur_plan_p =
	fftw_plan_many_dft (rank, tmp, howmany,
	      reinterpret_cast<fftw_complex *> (const_cast<Complex *> (in)),
	      0, stride, dist, reinterpret_cast<fftw_complex *> (out),
	      0, stride, dist, dir, plan_flags);

      if (*cur_plan_p == 0)
	(*current_liboctave_error_handler) ("Error creating fftw plan");
    }

  return *cur_plan_p;
}
 
fftw_plan
octave_fftw_planner::create_plan (const int rank, const dim_vector dims, 
				  int howmany, int stride, int dist, 
				  const double *in, Complex *out)
{
  fftw_plan *cur_plan_p = &rplan;
  bool create_new_plan = false;
  bool ioalign = CHECK_SIMD_ALIGNMENT (in) && CHECK_SIMD_ALIGNMENT (out);

  // Don't create a new plan if we have a non SIMD plan already but
  // can do SIMD.  This prevents endlessly recreating plans if we
  // change the alignment.

  if (rplan == 0 || rd != dist || rs != stride || rr != rank
      || rh != howmany || ((ioalign != rsimd_align) ? !ioalign : false))
    create_new_plan = true;
  else
    {
      // We still might not have the same shape of array.

      for (int i = 0; i < rank; i++)
	if (dims(i) != rn(i))
	  {
	    create_new_plan = true;
	    break;
	  }
    }

  if (create_new_plan)
    {
      rd = dist;
      rs = stride;
      rr = rank;
      rh = howmany;
      rsimd_align = ioalign;
      rn = dims;

      if (ioalign)
	plan_flags &= ~FFTW_UNALIGNED;
      else
	plan_flags |= FFTW_UNALIGNED;

      if (*cur_plan_p)
	fftw_destroy_plan (*cur_plan_p);

      // Note reversal of dimensions for column major storage in FFTW.

      OCTAVE_LOCAL_BUFFER (int, tmp, rank);

      for (int i = 0, j = rank-1; i < rank; i++, j--)
	tmp[i] = dims(j);

      *cur_plan_p =
	fftw_plan_many_dft_r2c (rank, tmp, howmany,
	      (const_cast<double *> (in)),
	      0, stride, dist, reinterpret_cast<fftw_complex *> (out),
	      0, stride, dist, plan_flags);

      if (*cur_plan_p == 0)
	(*current_liboctave_error_handler) ("Error creating fftw plan");
    }

  return *cur_plan_p;
}

static octave_fftw_planner fftw_planner;

static inline void
convert_packcomplex_1d (Complex *out, size_t nr, size_t nc,
			int stride, int dist)
{
  OCTAVE_QUIT;

  // Fill in the missing data.

  for (size_t i = 0; i < nr; i++)
    for (size_t j = nc/2+1; j < nc; j++)
      out[j*stride + i*dist] = conj(out[(nc - j)*stride + i*dist]);

  OCTAVE_QUIT;
}

static inline void
convert_packcomplex_Nd (Complex *out, const dim_vector &dv)
{
  size_t nc = dv(0);
  size_t nr = dv(1);
  size_t np = (dv.length () > 2 ? dv.numel () / nc / nr : 1);
  size_t nrp = nr * np;
  Complex *ptr1, *ptr2;

  OCTAVE_QUIT;

  // Create space for the missing elements.

  for (size_t i = 0; i < nrp; i++)
    {
      ptr1 = out + i * (nc/2 + 1) + nrp*((nc-1)/2);
      ptr2 = out + i * nc;
      for (size_t j = 0; j < nc/2+1; j++)
	*ptr2++ = *ptr1++;
    }

  OCTAVE_QUIT;

  // Fill in the missing data for the rank = 2 case directly for speed.

  for (size_t i = 0; i < np; i++)
    {
      for (size_t j = 1; j < nr; j++)
	for (size_t k = nc/2+1; k < nc; k++)
	  out[k + (j + i*nr)*nc] = conj(out[nc - k + ((i+1)*nr - j)*nc]);

      for (size_t j = nc/2+1; j < nc; j++)
	out[j + i*nr*nc] = conj(out[(i*nr+1)*nc - j]);
    }

  OCTAVE_QUIT;

  // Now do the permutations needed for rank > 2 cases.

  size_t jstart = dv(0) * dv(1);
  size_t kstep = dv(0);
  size_t nel = dv.numel ();

  for (int inner = 2; inner < dv.length (); inner++) 
    {
      size_t jmax = jstart * dv(inner);
      for (size_t i = 0; i < nel; i+=jmax)
	for (size_t j = jstart, jj = jmax-jstart; j < jj; 
	     j+=jstart, jj-=jstart)
	  for (size_t k = 0; k < jstart; k+= kstep)
	    for (size_t l = nc/2+1; l < nc; l++)
	      {
		Complex tmp = out[i+ j + k + l];
		out[i + j + k + l] =  out[i + jj + k + l];
		out[i + jj + k + l] = tmp;
	      }
      jstart = jmax;
    }

  OCTAVE_QUIT;
}

int
octave_fftw::fft (const double *in, Complex *out, size_t npts, 
		  size_t nsamples, int stride, int dist)
{
  dist = (dist < 0 ? npts : dist);

  dim_vector dv (npts);
  fftw_plan plan = fftw_planner.create_plan (1, dv, nsamples, stride, dist,
					     in, out);

  fftw_execute_dft_r2c (plan, (const_cast<double *>(in)),
			reinterpret_cast<fftw_complex *> (out));

  // Need to create other half of the transform.

  convert_packcomplex_1d (out, nsamples, npts, stride, dist);

  return 0;
}

int
octave_fftw::fft (const Complex *in, Complex *out, size_t npts, 
		  size_t nsamples, int stride, int dist)
{
  dist = (dist < 0 ? npts : dist);

  dim_vector dv (npts);
  fftw_plan plan = fftw_planner.create_plan (FFTW_FORWARD, 1, dv, nsamples,
					     stride, dist, in, out);

  fftw_execute_dft (plan, 
	reinterpret_cast<fftw_complex *> (const_cast<Complex *>(in)),
	reinterpret_cast<fftw_complex *> (out));

  return 0;
}

int
octave_fftw::ifft (const Complex *in, Complex *out, size_t npts, 
		   size_t nsamples, int stride, int dist)
{
  dist = (dist < 0 ? npts : dist);

  dim_vector dv (npts);
  fftw_plan plan = fftw_planner.create_plan (FFTW_BACKWARD, 1, dv, nsamples,
					     stride, dist, in, out);

  fftw_execute_dft (plan, 
	reinterpret_cast<fftw_complex *> (const_cast<Complex *>(in)),
	reinterpret_cast<fftw_complex *> (out));

  const Complex scale = npts;
  for (size_t j = 0; j < nsamples; j++)
    for (size_t i = 0; i < npts; i++)
      out[i*stride + j*dist] /= scale;

  return 0;
}

int
octave_fftw::fftNd (const double *in, Complex *out, const int rank, 
		    const dim_vector &dv)
{
  int dist = 1;
  for (int i = 0; i < rank; i++)
    dist *= dv(i);

  // Fool with the position of the start of the output matrix, so that
  // creating other half of the matrix won't cause cache problems.

  int offset = (dv.numel () / dv(0)) * ((dv(0) - 1) / 2); 
  
  fftw_plan plan = fftw_planner.create_plan (rank, dv, 1, 1, dist,
					     in, out + offset);

  fftw_execute_dft_r2c (plan, (const_cast<double *>(in)),
			reinterpret_cast<fftw_complex *> (out+ offset));

  // Need to create other half of the transform.

  convert_packcomplex_Nd (out, dv);

  return 0;
}

int
octave_fftw::fftNd (const Complex *in, Complex *out, const int rank, 
		    const dim_vector &dv)
{
  int dist = 1;
  for (int i = 0; i < rank; i++)
    dist *= dv(i);

  fftw_plan plan = fftw_planner.create_plan (FFTW_FORWARD, rank, dv, 1, 1,
					     dist, in, out);

  fftw_execute_dft (plan, 
	reinterpret_cast<fftw_complex *> (const_cast<Complex *>(in)),
	reinterpret_cast<fftw_complex *> (out));

  return 0;
}

int
octave_fftw::ifftNd (const Complex *in, Complex *out, const int rank, 
		     const dim_vector &dv)
{
  int dist = 1;
  for (int i = 0; i < rank; i++)
    dist *= dv(i);

  fftw_plan plan = fftw_planner.create_plan (FFTW_BACKWARD, rank, dv, 1, 1,
					     dist, in, out);

  fftw_execute_dft (plan, 
	reinterpret_cast<fftw_complex *> (const_cast<Complex *>(in)),
	reinterpret_cast<fftw_complex *> (out));

  const size_t npts = dv.numel ();
  const Complex scale = npts;
  for (size_t i = 0; i < npts; i++)
    out[i] /= scale;

  return 0;
}

#endif

/*
;;; Local Variables: ***
;;; mode: C++ ***
;;; End: ***
*/