1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958
|
/*
Copyright (C) 2003 David Bateman
This file is part of Octave.
Octave is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2, or (at your option) any
later version.
Octave is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with Octave; see the file COPYING. If not, write to the Free
Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301, USA.
Code stolen in large part from Python's, listobject.c, which itself had
no license header. However, thanks to Tim Peters for the parts of the
code I ripped-off.
As required in the Python license the short description of the changes
made are
* convert the sorting code in listobject.cc into a generic class,
replacing PyObject* with the type of the class T.
The Python license is
PSF LICENSE AGREEMENT FOR PYTHON 2.3
--------------------------------------
1. This LICENSE AGREEMENT is between the Python Software Foundation
("PSF"), and the Individual or Organization ("Licensee") accessing and
otherwise using Python 2.3 software in source or binary form and its
associated documentation.
2. Subject to the terms and conditions of this License Agreement, PSF
hereby grants Licensee a nonexclusive, royalty-free, world-wide
license to reproduce, analyze, test, perform and/or display publicly,
prepare derivative works, distribute, and otherwise use Python 2.3
alone or in any derivative version, provided, however, that PSF's
License Agreement and PSF's notice of copyright, i.e., "Copyright (c)
2001, 2002, 2003 Python Software Foundation; All Rights Reserved" are
retained in Python 2.3 alone or in any derivative version prepared by
Licensee.
3. In the event Licensee prepares a derivative work that is based on
or incorporates Python 2.3 or any part thereof, and wants to make
the derivative work available to others as provided herein, then
Licensee hereby agrees to include in any such work a brief summary of
the changes made to Python 2.3.
4. PSF is making Python 2.3 available to Licensee on an "AS IS"
basis. PSF MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR
IMPLIED. BY WAY OF EXAMPLE, BUT NOT LIMITATION, PSF MAKES NO AND
DISCLAIMS ANY REPRESENTATION OR WARRANTY OF MERCHANTABILITY OR FITNESS
FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF PYTHON 2.3 WILL NOT
INFRINGE ANY THIRD PARTY RIGHTS.
5. PSF SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON
2.3 FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS
A RESULT OF MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 2.3,
OR ANY DERIVATIVE THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.
6. This License Agreement will automatically terminate upon a material
breach of its terms and conditions.
7. Nothing in this License Agreement shall be deemed to create any
relationship of agency, partnership, or joint venture between PSF and
Licensee. This License Agreement does not grant permission to use PSF
trademarks or trade name in a trademark sense to endorse or promote
products or services of Licensee, or any third party.
8. By copying, installing or otherwise using Python 2.3, Licensee
agrees to be bound by the terms and conditions of this License
Agreement.
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include "lo-mappers.h"
#include "quit.h"
#include "oct-sort.h"
#define IFLT(a,b) if (compare == NULL ? ((a) < (b)) : compare ((a), (b)))
template <class T>
octave_sort<T>::octave_sort (void) : compare (NULL)
{
merge_init ();
merge_getmem (1024);
}
template <class T>
octave_sort<T>::octave_sort (bool (*comp) (T, T)) : compare (comp)
{
merge_init ();
merge_getmem (1024);
}
/* Reverse a slice of a list in place, from lo up to (exclusive) hi. */
template <class T>
void
octave_sort<T>::reverse_slice(T *lo, T *hi)
{
--hi;
while (lo < hi)
{
T t = *lo;
*lo = *hi;
*hi = t;
++lo;
--hi;
}
}
template <class T>
void
octave_sort<T>::binarysort (T *lo, T *hi, T *start)
{
register T *l, *p, *r;
register T pivot;
if (lo == start)
++start;
for (; start < hi; ++start)
{
/* set l to where *start belongs */
l = lo;
r = start;
pivot = *r;
/* Invariants:
* pivot >= all in [lo, l).
* pivot < all in [r, start).
* The second is vacuously true at the start.
*/
do
{
p = l + ((r - l) >> 1);
IFLT (pivot, *p)
r = p;
else
l = p+1;
}
while (l < r);
/* The invariants still hold, so pivot >= all in [lo, l) and
pivot < all in [l, start), so pivot belongs at l. Note
that if there are elements equal to pivot, l points to the
first slot after them -- that's why this sort is stable.
Slide over to make room.
Caution: using memmove is much slower under MSVC 5;
we're not usually moving many slots. */
for (p = start; p > l; --p)
*p = *(p-1);
*l = pivot;
}
return;
}
/*
Return the length of the run beginning at lo, in the slice [lo, hi). lo < hi
is required on entry. "A run" is the longest ascending sequence, with
lo[0] <= lo[1] <= lo[2] <= ...
or the longest descending sequence, with
lo[0] > lo[1] > lo[2] > ...
Boolean *descending is set to 0 in the former case, or to 1 in the latter.
For its intended use in a stable mergesort, the strictness of the defn of
"descending" is needed so that the caller can safely reverse a descending
sequence without violating stability (strict > ensures there are no equal
elements to get out of order).
Returns -1 in case of error.
*/
template <class T>
int
octave_sort<T>::count_run(T *lo, T *hi, int *descending)
{
int n;
*descending = 0;
++lo;
if (lo == hi)
return 1;
n = 2;
IFLT (*lo, *(lo-1))
{
*descending = 1;
for (lo = lo+1; lo < hi; ++lo, ++n)
{
IFLT (*lo, *(lo-1))
;
else
break;
}
}
else
{
for (lo = lo+1; lo < hi; ++lo, ++n)
{
IFLT (*lo, *(lo-1))
break;
}
}
return n;
}
/*
Locate the proper position of key in a sorted vector; if the vector contains
an element equal to key, return the position immediately to the left of
the leftmost equal element. [gallop_right() does the same except returns
the position to the right of the rightmost equal element (if any).]
"a" is a sorted vector with n elements, starting at a[0]. n must be > 0.
"hint" is an index at which to begin the search, 0 <= hint < n. The closer
hint is to the final result, the faster this runs.
The return value is the int k in 0..n such that
a[k-1] < key <= a[k]
pretending that *(a-1) is minus infinity and a[n] is plus infinity. IOW,
key belongs at index k; or, IOW, the first k elements of a should precede
key, and the last n-k should follow key.
Returns -1 on error. See listsort.txt for info on the method.
*/
template <class T>
int
octave_sort<T>::gallop_left(T key, T *a, int n, int hint)
{
int ofs;
int lastofs;
int k;
a += hint;
lastofs = 0;
ofs = 1;
IFLT (*a, key)
{
/* a[hint] < key -- gallop right, until
* a[hint + lastofs] < key <= a[hint + ofs]
*/
const int maxofs = n - hint; /* &a[n-1] is highest */
while (ofs < maxofs)
{
IFLT (a[ofs], key)
{
lastofs = ofs;
ofs = (ofs << 1) + 1;
if (ofs <= 0) /* int overflow */
ofs = maxofs;
}
else /* key <= a[hint + ofs] */
break;
}
if (ofs > maxofs)
ofs = maxofs;
/* Translate back to offsets relative to &a[0]. */
lastofs += hint;
ofs += hint;
}
else
{
/* key <= a[hint] -- gallop left, until
* a[hint - ofs] < key <= a[hint - lastofs]
*/
const int maxofs = hint + 1; /* &a[0] is lowest */
while (ofs < maxofs)
{
IFLT (*(a-ofs), key)
break;
/* key <= a[hint - ofs] */
lastofs = ofs;
ofs = (ofs << 1) + 1;
if (ofs <= 0) /* int overflow */
ofs = maxofs;
}
if (ofs > maxofs)
ofs = maxofs;
/* Translate back to positive offsets relative to &a[0]. */
k = lastofs;
lastofs = hint - ofs;
ofs = hint - k;
}
a -= hint;
/* Now a[lastofs] < key <= a[ofs], so key belongs somewhere to the
* right of lastofs but no farther right than ofs. Do a binary
* search, with invariant a[lastofs-1] < key <= a[ofs].
*/
++lastofs;
while (lastofs < ofs)
{
int m = lastofs + ((ofs - lastofs) >> 1);
IFLT (a[m], key)
lastofs = m+1; /* a[m] < key */
else
ofs = m; /* key <= a[m] */
}
return ofs;
}
/*
Exactly like gallop_left(), except that if key already exists in a[0:n],
finds the position immediately to the right of the rightmost equal value.
The return value is the int k in 0..n such that
a[k-1] <= key < a[k]
or -1 if error.
The code duplication is massive, but this is enough different given that
we're sticking to "<" comparisons that it's much harder to follow if
written as one routine with yet another "left or right?" flag.
*/
template <class T>
int
octave_sort<T>::gallop_right(T key, T *a, int n, int hint)
{
int ofs;
int lastofs;
int k;
a += hint;
lastofs = 0;
ofs = 1;
IFLT (key, *a)
{
/* key < a[hint] -- gallop left, until
* a[hint - ofs] <= key < a[hint - lastofs]
*/
const int maxofs = hint + 1; /* &a[0] is lowest */
while (ofs < maxofs)
{
IFLT (key, *(a-ofs))
{
lastofs = ofs;
ofs = (ofs << 1) + 1;
if (ofs <= 0) /* int overflow */
ofs = maxofs;
}
else /* a[hint - ofs] <= key */
break;
}
if (ofs > maxofs)
ofs = maxofs;
/* Translate back to positive offsets relative to &a[0]. */
k = lastofs;
lastofs = hint - ofs;
ofs = hint - k;
}
else
{
/* a[hint] <= key -- gallop right, until
* a[hint + lastofs] <= key < a[hint + ofs]
*/
const int maxofs = n - hint; /* &a[n-1] is highest */
while (ofs < maxofs)
{
IFLT (key, a[ofs])
break;
/* a[hint + ofs] <= key */
lastofs = ofs;
ofs = (ofs << 1) + 1;
if (ofs <= 0) /* int overflow */
ofs = maxofs;
}
if (ofs > maxofs)
ofs = maxofs;
/* Translate back to offsets relative to &a[0]. */
lastofs += hint;
ofs += hint;
}
a -= hint;
/* Now a[lastofs] <= key < a[ofs], so key belongs somewhere to the
* right of lastofs but no farther right than ofs. Do a binary
* search, with invariant a[lastofs-1] <= key < a[ofs].
*/
++lastofs;
while (lastofs < ofs)
{
int m = lastofs + ((ofs - lastofs) >> 1);
IFLT (key, a[m])
ofs = m; /* key < a[m] */
else
lastofs = m+1; /* a[m] <= key */
}
return ofs;
}
/* Conceptually a MergeState's constructor. */
template <class T>
void
octave_sort<T>::merge_init(void)
{
ms.a = NULL;
ms.alloced = 0;
ms.n = 0;
ms.min_gallop = MIN_GALLOP;
}
/* Free all the temp memory owned by the MergeState. This must be called
* when you're done with a MergeState, and may be called before then if
* you want to free the temp memory early.
*/
template <class T>
void
octave_sort<T>::merge_freemem(void)
{
if (ms.a)
free (ms.a);
ms.alloced = 0;
ms.a = NULL;
}
static inline int
roundupsize(int n)
{
unsigned int nbits = 3;
unsigned int n2 = (unsigned int)n >> 8;
/* Round up:
* If n < 256, to a multiple of 8.
* If n < 2048, to a multiple of 64.
* If n < 16384, to a multiple of 512.
* If n < 131072, to a multiple of 4096.
* If n < 1048576, to a multiple of 32768.
* If n < 8388608, to a multiple of 262144.
* If n < 67108864, to a multiple of 2097152.
* If n < 536870912, to a multiple of 16777216.
* ...
* If n < 2**(5+3*i), to a multiple of 2**(3*i).
*
* This over-allocates proportional to the list size, making room
* for additional growth. The over-allocation is mild, but is
* enough to give linear-time amortized behavior over a long
* sequence of appends() in the presence of a poorly-performing
* system realloc() (which is a reality, e.g., across all flavors
* of Windows, with Win9x behavior being particularly bad -- and
* we've still got address space fragmentation problems on Win9x
* even with this scheme, although it requires much longer lists to
* provoke them than it used to).
*/
while (n2) {
n2 >>= 3;
nbits += 3;
}
return ((n >> nbits) + 1) << nbits;
}
/* Ensure enough temp memory for 'need' array slots is available.
* Returns 0 on success and -1 if the memory can't be gotten.
*/
template <class T>
int
octave_sort<T>::merge_getmem(int need)
{
if (need <= ms.alloced)
return 0;
need = roundupsize(need);
/* Don't realloc! That can cost cycles to copy the old data, but
* we don't care what's in the block.
*/
merge_freemem( );
ms.a = (T *) malloc (need * sizeof (T));
if (ms.a) {
ms.alloced = need;
return 0;
}
merge_freemem( ); /* reset to sane state */
return -1;
}
#define MERGE_GETMEM(NEED) ((NEED) <= ms.alloced ? 0 : \
merge_getmem(NEED))
/* Merge the na elements starting at pa with the nb elements starting at pb
* in a stable way, in-place. na and nb must be > 0, and pa + na == pb.
* Must also have that *pb < *pa, that pa[na-1] belongs at the end of the
* merge, and should have na <= nb. See listsort.txt for more info.
* Return 0 if successful, -1 if error.
*/
template <class T>
int
octave_sort<T>::merge_lo(T *pa, int na, T *pb, int nb)
{
int k;
T *dest;
int result = -1; /* guilty until proved innocent */
int min_gallop = ms.min_gallop;
if (MERGE_GETMEM(na) < 0)
return -1;
memcpy(ms.a, pa, na * sizeof(T));
dest = pa;
pa = ms.a;
*dest++ = *pb++;
--nb;
if (nb == 0)
goto Succeed;
if (na == 1)
goto CopyB;
for (;;) {
int acount = 0; /* # of times A won in a row */
int bcount = 0; /* # of times B won in a row */
/* Do the straightforward thing until (if ever) one run
* appears to win consistently.
*/
for (;;) {
IFLT (*pb, *pa)
{
*dest++ = *pb++;
++bcount;
acount = 0;
--nb;
if (nb == 0)
goto Succeed;
if (bcount >= min_gallop)
break;
}
else
{
*dest++ = *pa++;
++acount;
bcount = 0;
--na;
if (na == 1)
goto CopyB;
if (acount >= min_gallop)
break;
}
}
/* One run is winning so consistently that galloping may
* be a huge win. So try that, and continue galloping until
* (if ever) neither run appears to be winning consistently
* anymore.
*/
++min_gallop;
do
{
min_gallop -= min_gallop > 1;
ms.min_gallop = min_gallop;
k = gallop_right(*pb, pa, na, 0);
acount = k;
if (k)
{
if (k < 0)
goto Fail;
memcpy(dest, pa, k * sizeof(T));
dest += k;
pa += k;
na -= k;
if (na == 1)
goto CopyB;
/* na==0 is impossible now if the comparison
* function is consistent, but we can't assume
* that it is.
*/
if (na == 0)
goto Succeed;
}
*dest++ = *pb++;
--nb;
if (nb == 0)
goto Succeed;
k = gallop_left(*pa, pb, nb, 0);
bcount = k;
if (k) {
if (k < 0)
goto Fail;
memmove(dest, pb, k * sizeof(T));
dest += k;
pb += k;
nb -= k;
if (nb == 0)
goto Succeed;
}
*dest++ = *pa++;
--na;
if (na == 1)
goto CopyB;
} while (acount >= MIN_GALLOP || bcount >= MIN_GALLOP);
++min_gallop; /* penalize it for leaving galloping mode */
ms.min_gallop = min_gallop;
}
Succeed:
result = 0;
Fail:
if (na)
memcpy(dest, pa, na * sizeof(T));
return result;
CopyB:
/* The last element of pa belongs at the end of the merge. */
memmove(dest, pb, nb * sizeof(T));
dest[nb] = *pa;
return 0;
}
/* Merge the na elements starting at pa with the nb elements starting at pb
* in a stable way, in-place. na and nb must be > 0, and pa + na == pb.
* Must also have that *pb < *pa, that pa[na-1] belongs at the end of the
* merge, and should have na >= nb. See listsort.txt for more info.
* Return 0 if successful, -1 if error.
*/
template <class T>
int
octave_sort<T>::merge_hi(T *pa, int na, T *pb, int nb)
{
int k;
T *dest;
int result = -1; /* guilty until proved innocent */
T *basea;
T *baseb;
int min_gallop = ms.min_gallop;
if (MERGE_GETMEM(nb) < 0)
return -1;
dest = pb + nb - 1;
memcpy(ms.a, pb, nb * sizeof(T));
basea = pa;
baseb = ms.a;
pb = ms.a + nb - 1;
pa += na - 1;
*dest-- = *pa--;
--na;
if (na == 0)
goto Succeed;
if (nb == 1)
goto CopyA;
for (;;)
{
int acount = 0; /* # of times A won in a row */
int bcount = 0; /* # of times B won in a row */
/* Do the straightforward thing until (if ever) one run
* appears to win consistently.
*/
for (;;)
{
IFLT (*pb, *pa)
{
*dest-- = *pa--;
++acount;
bcount = 0;
--na;
if (na == 0)
goto Succeed;
if (acount >= min_gallop)
break;
}
else
{
*dest-- = *pb--;
++bcount;
acount = 0;
--nb;
if (nb == 1)
goto CopyA;
if (bcount >= min_gallop)
break;
}
}
/* One run is winning so consistently that galloping may
* be a huge win. So try that, and continue galloping until
* (if ever) neither run appears to be winning consistently
* anymore.
*/
++min_gallop;
do
{
min_gallop -= min_gallop > 1;
ms.min_gallop = min_gallop;
k = gallop_right(*pb, basea, na, na-1);
if (k < 0)
goto Fail;
k = na - k;
acount = k;
if (k)
{
dest -= k;
pa -= k;
memmove(dest+1, pa+1, k * sizeof(T ));
na -= k;
if (na == 0)
goto Succeed;
}
*dest-- = *pb--;
--nb;
if (nb == 1)
goto CopyA;
k = gallop_left(*pa, baseb, nb, nb-1);
if (k < 0)
goto Fail;
k = nb - k;
bcount = k;
if (k)
{
dest -= k;
pb -= k;
memcpy(dest+1, pb+1, k * sizeof(T));
nb -= k;
if (nb == 1)
goto CopyA;
/* nb==0 is impossible now if the comparison
* function is consistent, but we can't assume
* that it is.
*/
if (nb == 0)
goto Succeed;
}
*dest-- = *pa--;
--na;
if (na == 0)
goto Succeed;
} while (acount >= MIN_GALLOP || bcount >= MIN_GALLOP);
++min_gallop; /* penalize it for leaving galloping mode */
ms.min_gallop = min_gallop;
}
Succeed:
result = 0;
Fail:
if (nb)
memcpy(dest-(nb-1), baseb, nb * sizeof(T));
return result;
CopyA:
/* The first element of pb belongs at the front of the merge. */
dest -= na;
pa -= na;
memmove(dest+1, pa+1, na * sizeof(T));
*dest = *pb;
return 0;
}
/* Merge the two runs at stack indices i and i+1.
* Returns 0 on success, -1 on error.
*/
template <class T>
int
octave_sort<T>::merge_at(int i)
{
T *pa, *pb;
int na, nb;
int k;
pa = ms.pending[i].base;
na = ms.pending[i].len;
pb = ms.pending[i+1].base;
nb = ms.pending[i+1].len;
/* Record the length of the combined runs; if i is the 3rd-last
* run now, also slide over the last run (which isn't involved
* in this merge). The current run i+1 goes away in any case.
*/
ms.pending[i].len = na + nb;
if (i == ms.n - 3)
ms.pending[i+1] = ms.pending[i+2];
--ms.n;
/* Where does b start in a? Elements in a before that can be
* ignored (already in place).
*/
k = gallop_right(*pb, pa, na, 0);
if (k < 0)
return -1;
pa += k;
na -= k;
if (na == 0)
return 0;
/* Where does a end in b? Elements in b after that can be
* ignored (already in place).
*/
nb = gallop_left(pa[na-1], pb, nb, nb-1);
if (nb <= 0)
return nb;
/* Merge what remains of the runs, using a temp array with
* min(na, nb) elements.
*/
if (na <= nb)
return merge_lo(pa, na, pb, nb);
else
return merge_hi(pa, na, pb, nb);
}
/* Examine the stack of runs waiting to be merged, merging adjacent runs
* until the stack invariants are re-established:
*
* 1. len[-3] > len[-2] + len[-1]
* 2. len[-2] > len[-1]
*
* See listsort.txt for more info.
*
* Returns 0 on success, -1 on error.
*/
template <class T>
int
octave_sort<T>::merge_collapse(void)
{
struct s_slice *p = ms.pending;
while (ms.n > 1)
{
int n = ms.n - 2;
if (n > 0 && p[n-1].len <= p[n].len + p[n+1].len)
{
if (p[n-1].len < p[n+1].len)
--n;
if (merge_at(n) < 0)
return -1;
}
else if (p[n].len <= p[n+1].len)
{
if (merge_at(n) < 0)
return -1;
}
else
break;
}
return 0;
}
/* Regardless of invariants, merge all runs on the stack until only one
* remains. This is used at the end of the mergesort.
*
* Returns 0 on success, -1 on error.
*/
template <class T>
int
octave_sort<T>::merge_force_collapse(void)
{
struct s_slice *p = ms.pending;
while (ms.n > 1)
{
int n = ms.n - 2;
if (n > 0 && p[n-1].len < p[n+1].len)
--n;
if (merge_at(n) < 0)
return -1;
}
return 0;
}
/* Compute a good value for the minimum run length; natural runs shorter
* than this are boosted artificially via binary insertion.
*
* If n < 64, return n (it's too small to bother with fancy stuff).
* Else if n is an exact power of 2, return 32.
* Else return an int k, 32 <= k <= 64, such that n/k is close to, but
* strictly less than, an exact power of 2.
*
* See listsort.txt for more info.
*/
template <class T>
int
octave_sort<T>::merge_compute_minrun(int n)
{
int r = 0; /* becomes 1 if any 1 bits are shifted off */
while (n >= 64) {
r |= n & 1;
n >>= 1;
}
return n + r;
}
template <class T>
void
octave_sort<T>::sort (T *v, int elements)
{
/* Re-initialize the Mergestate as this might be the second time called */
ms.n = 0;
ms.min_gallop = MIN_GALLOP;
if (elements > 1)
{
int nremaining = elements;
T *lo = v;
T *hi = v + elements;
/* March over the array once, left to right, finding natural runs,
* and extending short natural runs to minrun elements.
*/
int minrun = merge_compute_minrun(nremaining);
do
{
int descending;
int n;
/* Identify next run. */
n = count_run(lo, hi, &descending);
if (n < 0)
goto fail;
if (descending)
reverse_slice(lo, lo + n);
/* If short, extend to min(minrun, nremaining). */
if (n < minrun)
{
const int force = nremaining <= minrun ? nremaining : minrun;
binarysort(lo, lo + force, lo + n);
n = force;
}
/* Push run onto pending-runs stack, and maybe merge. */
assert(ms.n < MAX_MERGE_PENDING);
ms.pending[ms.n].base = lo;
ms.pending[ms.n].len = n;
++ms.n;
if (merge_collapse( ) < 0)
goto fail;
/* Advance to find next run. */
lo += n;
nremaining -= n;
} while (nremaining);
merge_force_collapse( );
}
fail:
return;
}
/*
;;; Local Variables: ***
;;; mode: C++ ***
;;; End: ***
*/
|