File: ddstp.f

package info (click to toggle)
octave2.1 1%3A2.1.73-19
  • links: PTS, VCS
  • area: main
  • in suites: lenny
  • size: 37,108 kB
  • ctags: 20,884
  • sloc: cpp: 106,508; fortran: 46,978; ansic: 5,720; sh: 4,991; makefile: 3,230; yacc: 3,132; lex: 2,892; lisp: 1,715; perl: 778; awk: 174; exp: 134
file content (465 lines) | stat: -rw-r--r-- 12,661 bytes parent folder | download | duplicates (10)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
C Work performed under the auspices of the U.S. Department of Energy
C by Lawrence Livermore National Laboratory under contract number 
C W-7405-Eng-48.
C
      SUBROUTINE DDSTP(X,Y,YPRIME,NEQ,RES,JAC,PSOL,H,WT,VT,
     *  JSTART,IDID,RPAR,IPAR,PHI,SAVR,DELTA,E,WM,IWM,
     *  ALPHA,BETA,GAMMA,PSI,SIGMA,CJ,CJOLD,HOLD,S,HMIN,UROUND,
     *  EPLI,SQRTN,RSQRTN,EPCON,IPHASE,JCALC,JFLG,K,KOLD,NS,NONNEG,
     *  NTYPE,NLS)
C
C***BEGIN PROLOGUE  DDSTP
C***REFER TO  DDASPK
C***DATE WRITTEN   890101   (YYMMDD)
C***REVISION DATE  900926   (YYMMDD)
C***REVISION DATE  940909   (YYMMDD) (Reset PSI(1), PHI(*,2) at 690)
C
C
C-----------------------------------------------------------------------
C***DESCRIPTION
C
C     DDSTP solves a system of differential/algebraic equations of 
C     the form G(X,Y,YPRIME) = 0, for one step (normally from X to X+H).
C
C     The methods used are modified divided difference, fixed leading 
C     coefficient forms of backward differentiation formulas.  
C     The code adjusts the stepsize and order to control the local error
C     per step.
C
C
C     The parameters represent
C     X  --        Independent variable.
C     Y  --        Solution vector at X.
C     YPRIME --    Derivative of solution vector
C                  after successful step.
C     NEQ --       Number of equations to be integrated.
C     RES --       External user-supplied subroutine
C                  to evaluate the residual.  See RES description
C                  in DDASPK prologue.
C     JAC --       External user-supplied routine to update
C                  Jacobian or preconditioner information in the
C                  nonlinear solver.  See JAC description in DDASPK
C                  prologue.
C     PSOL --      External user-supplied routine to solve
C                  a linear system using preconditioning. 
C                  (This is optional).  See PSOL in DDASPK prologue.
C     H --         Appropriate step size for next step.
C                  Normally determined by the code.
C     WT --        Vector of weights for error criterion used in Newton test.
C     VT --        Masked vector of weights used in error test.
C     JSTART --    Integer variable set 0 for
C                  first step, 1 otherwise.
C     IDID --      Completion code returned from the nonlinear solver.
C                  See IDID description in DDASPK prologue.
C     RPAR,IPAR -- Real and integer parameter arrays that
C                  are used for communication between the
C                  calling program and external user routines.
C                  They are not altered by DNSK
C     PHI --       Array of divided differences used by
C                  DDSTP. The length is NEQ*(K+1), where
C                  K is the maximum order.
C     SAVR --      Work vector for DDSTP of length NEQ.
C     DELTA,E --   Work vectors for DDSTP of length NEQ.
C     WM,IWM --    Real and integer arrays storing
C                  information required by the linear solver.
C
C     The other parameters are information
C     which is needed internally by DDSTP to
C     continue from step to step.
C
C-----------------------------------------------------------------------
C***ROUTINES CALLED
C   NLS, DDWNRM, DDATRP
C
C***END PROLOGUE  DDSTP
C
C
      IMPLICIT DOUBLE PRECISION(A-H,O-Z)
      DIMENSION Y(*),YPRIME(*),WT(*),VT(*)
      DIMENSION PHI(NEQ,*),SAVR(*),DELTA(*),E(*)
      DIMENSION WM(*),IWM(*)
      DIMENSION PSI(*),ALPHA(*),BETA(*),GAMMA(*),SIGMA(*)
      DIMENSION RPAR(*),IPAR(*)
      EXTERNAL  RES, JAC, PSOL, NLS
C
      PARAMETER (LMXORD=3)
      PARAMETER (LNST=11, LETF=14, LCFN=15)
C
C
C-----------------------------------------------------------------------
C     BLOCK 1.
C     Initialize.  On the first call, set
C     the order to 1 and initialize
C     other variables.
C-----------------------------------------------------------------------
C
C     Initializations for all calls
C
      XOLD=X
      NCF=0
      NEF=0
      IF(JSTART .NE. 0) GO TO 120
C
C     If this is the first step, perform
C     other initializations
C
      K=1
      KOLD=0
      HOLD=0.0D0
      PSI(1)=H
      CJ = 1.D0/H
      IPHASE = 0
      NS=0
120   CONTINUE
C
C
C
C
C
C-----------------------------------------------------------------------
C     BLOCK 2
C     Compute coefficients of formulas for
C     this step.
C-----------------------------------------------------------------------
200   CONTINUE
      KP1=K+1
      KP2=K+2
      KM1=K-1
      IF(H.NE.HOLD.OR.K .NE. KOLD) NS = 0
      NS=MIN0(NS+1,KOLD+2)
      NSP1=NS+1
      IF(KP1 .LT. NS)GO TO 230
C
      BETA(1)=1.0D0
      ALPHA(1)=1.0D0
      TEMP1=H
      GAMMA(1)=0.0D0
      SIGMA(1)=1.0D0
      DO 210 I=2,KP1
         TEMP2=PSI(I-1)
         PSI(I-1)=TEMP1
         BETA(I)=BETA(I-1)*PSI(I-1)/TEMP2
         TEMP1=TEMP2+H
         ALPHA(I)=H/TEMP1
         SIGMA(I)=(I-1)*SIGMA(I-1)*ALPHA(I)
         GAMMA(I)=GAMMA(I-1)+ALPHA(I-1)/H
210      CONTINUE
      PSI(KP1)=TEMP1
230   CONTINUE
C
C     Compute ALPHAS, ALPHA0
C
      ALPHAS = 0.0D0
      ALPHA0 = 0.0D0
      DO 240 I = 1,K
        ALPHAS = ALPHAS - 1.0D0/I
        ALPHA0 = ALPHA0 - ALPHA(I)
240     CONTINUE
C
C     Compute leading coefficient CJ
C
      CJLAST = CJ
      CJ = -ALPHAS/H
C
C     Compute variable stepsize error coefficient CK
C
      CK = ABS(ALPHA(KP1) + ALPHAS - ALPHA0)
      CK = MAX(CK,ALPHA(KP1))
C
C     Change PHI to PHI STAR
C
      IF(KP1 .LT. NSP1) GO TO 280
      DO 270 J=NSP1,KP1
         DO 260 I=1,NEQ
260         PHI(I,J)=BETA(J)*PHI(I,J)
270      CONTINUE
280   CONTINUE
C
C     Update time
C
      X=X+H
C
C     Initialize IDID to 1
C
      IDID = 1
C
C
C
C
C
C-----------------------------------------------------------------------
C     BLOCK 3
C     Call the nonlinear system solver to obtain the solution and
C     derivative.
C-----------------------------------------------------------------------
C
      CALL NLS(X,Y,YPRIME,NEQ,
     *   RES,JAC,PSOL,H,WT,JSTART,IDID,RPAR,IPAR,PHI,GAMMA,
     *   SAVR,DELTA,E,WM,IWM,CJ,CJOLD,CJLAST,S,
     *   UROUND,EPLI,SQRTN,RSQRTN,EPCON,JCALC,JFLG,KP1,
     *   NONNEG,NTYPE,IERNLS)
C
      IF(IERNLS .NE. 0)GO TO 600
C
C
C
C
C
C-----------------------------------------------------------------------
C     BLOCK 4
C     Estimate the errors at orders K,K-1,K-2
C     as if constant stepsize was used. Estimate
C     the local error at order K and test
C     whether the current step is successful.
C-----------------------------------------------------------------------
C
C     Estimate errors at orders K,K-1,K-2
C
      ENORM = DDWNRM(NEQ,E,VT,RPAR,IPAR)
      ERK = SIGMA(K+1)*ENORM
      TERK = (K+1)*ERK
      EST = ERK
      KNEW=K
      IF(K .EQ. 1)GO TO 430
      DO 405 I = 1,NEQ
405     DELTA(I) = PHI(I,KP1) + E(I)
      ERKM1=SIGMA(K)*DDWNRM(NEQ,DELTA,VT,RPAR,IPAR)
      TERKM1 = K*ERKM1
      IF(K .GT. 2)GO TO 410
      IF(TERKM1 .LE. 0.5*TERK)GO TO 420
      GO TO 430
410   CONTINUE
      DO 415 I = 1,NEQ
415     DELTA(I) = PHI(I,K) + DELTA(I)
      ERKM2=SIGMA(K-1)*DDWNRM(NEQ,DELTA,VT,RPAR,IPAR)
      TERKM2 = (K-1)*ERKM2
      IF(MAX(TERKM1,TERKM2).GT.TERK)GO TO 430
C
C     Lower the order
C
420   CONTINUE
      KNEW=K-1
      EST = ERKM1
C
C
C     Calculate the local error for the current step
C     to see if the step was successful
C
430   CONTINUE
      ERR = CK * ENORM
      IF(ERR .GT. 1.0D0)GO TO 600
C
C
C
C
C
C-----------------------------------------------------------------------
C     BLOCK 5
C     The step is successful. Determine
C     the best order and stepsize for
C     the next step. Update the differences
C     for the next step.
C-----------------------------------------------------------------------
      IDID=1
      IWM(LNST)=IWM(LNST)+1
      KDIFF=K-KOLD
      KOLD=K
      HOLD=H
C
C
C     Estimate the error at order K+1 unless
C        already decided to lower order, or
C        already using maximum order, or
C        stepsize not constant, or
C        order raised in previous step
C
      IF(KNEW.EQ.KM1.OR.K.EQ.IWM(LMXORD))IPHASE=1
      IF(IPHASE .EQ. 0)GO TO 545
      IF(KNEW.EQ.KM1)GO TO 540
      IF(K.EQ.IWM(LMXORD)) GO TO 550
      IF(KP1.GE.NS.OR.KDIFF.EQ.1)GO TO 550
      DO 510 I=1,NEQ
510      DELTA(I)=E(I)-PHI(I,KP2)
      ERKP1 = (1.0D0/(K+2))*DDWNRM(NEQ,DELTA,VT,RPAR,IPAR)
      TERKP1 = (K+2)*ERKP1
      IF(K.GT.1)GO TO 520
      IF(TERKP1.GE.0.5D0*TERK)GO TO 550
      GO TO 530
520   IF(TERKM1.LE.MIN(TERK,TERKP1))GO TO 540
      IF(TERKP1.GE.TERK.OR.K.EQ.IWM(LMXORD))GO TO 550
C
C     Raise order
C
530   K=KP1
      EST = ERKP1
      GO TO 550
C
C     Lower order
C
540   K=KM1
      EST = ERKM1
      GO TO 550
C
C     If IPHASE = 0, increase order by one and multiply stepsize by
C     factor two
C
545   K = KP1
      HNEW = H*2.0D0
      H = HNEW
      GO TO 575
C
C
C     Determine the appropriate stepsize for
C     the next step.
C
550   HNEW=H
      TEMP2=K+1
      R=(2.0D0*EST+0.0001D0)**(-1.0D0/TEMP2)
      IF(R .LT. 2.0D0) GO TO 555
      HNEW = 2.0D0*H
      GO TO 560
555   IF(R .GT. 1.0D0) GO TO 560
      R = MAX(0.5D0,MIN(0.9D0,R))
      HNEW = H*R
560   H=HNEW
C
C
C     Update differences for next step
C
575   CONTINUE
      IF(KOLD.EQ.IWM(LMXORD))GO TO 585
      DO 580 I=1,NEQ
580      PHI(I,KP2)=E(I)
585   CONTINUE
      DO 590 I=1,NEQ
590      PHI(I,KP1)=PHI(I,KP1)+E(I)
      DO 595 J1=2,KP1
         J=KP1-J1+1
         DO 595 I=1,NEQ
595      PHI(I,J)=PHI(I,J)+PHI(I,J+1)
      JSTART = 1
      RETURN
C
C
C
C
C
C-----------------------------------------------------------------------
C     BLOCK 6
C     The step is unsuccessful. Restore X,PSI,PHI
C     Determine appropriate stepsize for
C     continuing the integration, or exit with
C     an error flag if there have been many
C     failures.
C-----------------------------------------------------------------------
600   IPHASE = 1
C
C     Restore X,PHI,PSI
C
      X=XOLD
      IF(KP1.LT.NSP1)GO TO 630
      DO 620 J=NSP1,KP1
         TEMP1=1.0D0/BETA(J)
         DO 610 I=1,NEQ
610         PHI(I,J)=TEMP1*PHI(I,J)
620      CONTINUE
630   CONTINUE
      DO 640 I=2,KP1
640      PSI(I-1)=PSI(I)-H
C
C
C     Test whether failure is due to nonlinear solver
C     or error test
C
      IF(IERNLS .EQ. 0)GO TO 660
      IWM(LCFN)=IWM(LCFN)+1
C
C
C     The nonlinear solver failed to converge.
C     Determine the cause of the failure and take appropriate action.
C     If IERNLS .LT. 0, then return.  Otherwise, reduce the stepsize
C     and try again, unless too many failures have occurred.
C
      IF (IERNLS .LT. 0) GO TO 675
      NCF = NCF + 1
      R = 0.25D0
      H = H*R
      IF (NCF .LT. 10 .AND. ABS(H) .GE. HMIN) GO TO 690
      IF (IDID .EQ. 1) IDID = -7
      IF (NEF .GE. 3) IDID = -9
      GO TO 675
C
C
C     The nonlinear solver converged, and the cause
C     of the failure was the error estimate
C     exceeding the tolerance.
C
660   NEF=NEF+1
      IWM(LETF)=IWM(LETF)+1
      IF (NEF .GT. 1) GO TO 665
C
C     On first error test failure, keep current order or lower
C     order by one.  Compute new stepsize based on differences
C     of the solution.
C
      K = KNEW
      TEMP2 = K + 1
      R = 0.90D0*(2.0D0*EST+0.0001D0)**(-1.0D0/TEMP2)
      R = MAX(0.25D0,MIN(0.9D0,R))
      H = H*R
      IF (ABS(H) .GE. HMIN) GO TO 690
      IDID = -6
      GO TO 675
C
C     On second error test failure, use the current order or
C     decrease order by one.  Reduce the stepsize by a factor of
C     one quarter.
C
665   IF (NEF .GT. 2) GO TO 670
      K = KNEW
      R = 0.25D0
      H = R*H
      IF (ABS(H) .GE. HMIN) GO TO 690
      IDID = -6
      GO TO 675
C
C     On third and subsequent error test failures, set the order to
C     one, and reduce the stepsize by a factor of one quarter.
C
670   K = 1
      R = 0.25D0
      H = R*H
      IF (ABS(H) .GE. HMIN) GO TO 690
      IDID = -6
      GO TO 675
C
C
C
C
C     For all crashes, restore Y to its last value,
C     interpolate to find YPRIME at last X, and return.
C
C     Before returning, verify that the user has not set
C     IDID to a nonnegative value.  If the user has set IDID
C     to a nonnegative value, then reset IDID to be -7, indicating
C     a failure in the nonlinear system solver.
C
675   CONTINUE
      CALL DDATRP(X,X,Y,YPRIME,NEQ,K,PHI,PSI)
      JSTART = 1
      IF (IDID .GE. 0) IDID = -7
      RETURN
C
C
C     Go back and try this step again.  
C     If this is the first step, reset PSI(1) and rescale PHI(*,2).
C
690   IF (KOLD .EQ. 0) THEN
        PSI(1) = H
        DO 695 I = 1,NEQ
695       PHI(I,2) = R*PHI(I,2)
        ENDIF
      GO TO 200
C
C------END OF SUBROUTINE DDSTP------------------------------------------
      END