| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 
 | CLASS = "DASRT"
INCLUDE = "DAERT.h"
OPTION
  NAME = "absolute tolerance"
  DOC_ITEM
Absolute tolerance.  May be either vector or scalar.  If a vector, it
must match the dimension of the state vector, and the relative
tolerance must also be a vector of the same length.
  END_DOC_ITEM
  TYPE = "Array<double>"
  SET_ARG_TYPE = "const $TYPE&"
  INIT_BODY
    $OPTVAR.resize (1);
    $OPTVAR(0) = ::sqrt (DBL_EPSILON);
  END_INIT_BODY
  SET_CODE
    void set_$OPT (double val)
      {
        $OPTVAR.resize (1);
        $OPTVAR(0) = (val > 0.0) ? val : ::sqrt (DBL_EPSILON);
        reset = true;
      }
    void set_$OPT (const $TYPE& val)
      { $OPTVAR = val; reset = true; }
  END_SET_CODE
END_OPTION
OPTION
  NAME = "relative tolerance"
  DOC_ITEM
Relative tolerance.  May be either vector or scalar.  If a vector, it
must match the dimension of the state vector, and the absolute
tolerance must also be a vector of the same length.
The local error test applied at each integration step is
@example
  abs (local error in x(i)) <= rtol(i) * abs (Y(i)) + atol(i)
@end example
  END_DOC_ITEM
  TYPE = "Array<double>"
  SET_ARG_TYPE = "const $TYPE&"
  INIT_BODY
    $OPTVAR.resize (1);
    $OPTVAR(0) = ::sqrt (DBL_EPSILON);
  END_INIT_BODY
  SET_CODE
    void set_$OPT (double val)
      {
        $OPTVAR.resize (1);
        $OPTVAR(0) = (val > 0.0) ? val : ::sqrt (DBL_EPSILON);
        reset = true;
      }
    void set_$OPT (const $TYPE& val)
      { $OPTVAR = val; reset = true; }
  END_SET_CODE
END_OPTION
OPTION
  NAME = "initial step size"
  DOC_ITEM
Differential-algebraic problems may occaisionally suffer from severe
scaling difficulties on the first step.  If you know a great deal
about the scaling of your problem, you can help to alleviate this
problem by specifying an initial stepsize.
  END_DOC_ITEM
  TYPE = "double"
  INIT_VALUE = "-1.0"
  SET_EXPR = "(val >= 0.0) ? val : -1.0"
END_OPTION
OPTION
  NAME = "maximum order"
  DOC_ITEM
Restrict the maximum order of the solution method.  This option must
be between 1 and 5, inclusive.
  END_DOC_ITEM
  TYPE = "int"
  INIT_VALUE = "-1"
  SET_EXPR = "val"
END_OPTION
OPTION
  NAME = "maximum step size"
  DOC_ITEM
Setting the maximum stepsize will avoid passing over very large
regions.
  END_DOC_ITEM
  TYPE = "double"
  INIT_VALUE = "-1.0"
  SET_EXPR = "(val >= 0.0) ? val : -1.0"
END_OPTION
OPTION
  NAME = "step limit"
  DOC_ITEM
Maximum number of integration steps to attempt on a single call to the
underlying Fortran code.
  END_DOC_ITEM
  TYPE = "int"
  INIT_VALUE = "-1"
  SET_EXPR = "(val >= 0) ? val : -1"
END_OPTION
 |