File: CmplxCHOL.cc

package info (click to toggle)
octave3.0 1%3A3.0.1-6lenny3
  • links: PTS, VCS
  • area: main
  • in suites: lenny
  • size: 49,912 kB
  • ctags: 27,149
  • sloc: cpp: 166,567; fortran: 61,399; ansic: 8,766; sh: 5,856; lex: 4,419; makefile: 3,965; yacc: 3,013; lisp: 1,692; objc: 889; perl: 795; awk: 532
file content (178 lines) | stat: -rw-r--r-- 4,497 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
/*

Copyright (C) 1994, 1995, 1996, 1997, 2002, 2003, 2004, 2005, 2007
              John W. Eaton

This file is part of Octave.

Octave is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3 of the License, or (at your
option) any later version.

Octave is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with Octave; see the file COPYING.  If not, see
<http://www.gnu.org/licenses/>.

*/

#ifdef HAVE_CONFIG_H
#include <config.h>
#endif

#include "dMatrix.h"
#include "dRowVector.h"
#include "CmplxCHOL.h"
#include "f77-fcn.h"
#include "lo-error.h"

extern "C"
{
  F77_RET_T
  F77_FUNC (zpotrf, ZPOTRF) (F77_CONST_CHAR_ARG_DECL, const octave_idx_type&,
			     Complex*, const octave_idx_type&, octave_idx_type&
			     F77_CHAR_ARG_LEN_DECL);
  F77_RET_T
  F77_FUNC (zpotri, ZPOTRI) (F77_CONST_CHAR_ARG_DECL, const octave_idx_type&,
			     Complex*, const octave_idx_type&, octave_idx_type&
			     F77_CHAR_ARG_LEN_DECL);

  F77_RET_T
  F77_FUNC (zpocon, ZPOCON) (F77_CONST_CHAR_ARG_DECL, const octave_idx_type&,
			     Complex*, const octave_idx_type&, const double&,
			     double&, Complex*, double*, 
			     octave_idx_type& F77_CHAR_ARG_LEN_DECL);
}

octave_idx_type
ComplexCHOL::init (const ComplexMatrix& a, bool calc_cond)
{
  octave_idx_type a_nr = a.rows ();
  octave_idx_type a_nc = a.cols ();

  if (a_nr != a_nc)
    {
      (*current_liboctave_error_handler)
	("ComplexCHOL requires square matrix");
      return -1;
    }

  octave_idx_type n = a_nc;
  octave_idx_type info;

  chol_mat = a;
  Complex *h = chol_mat.fortran_vec ();

  // Calculate the norm of the matrix, for later use.
  double anorm = 0;
  if (calc_cond) 
    anorm = chol_mat.abs().sum().row(static_cast<octave_idx_type>(0)).max();

  F77_XFCN (zpotrf, ZPOTRF, (F77_CONST_CHAR_ARG2 ("U", 1), n, h, n, info
			     F77_CHAR_ARG_LEN (1)));

  if (f77_exception_encountered)
    (*current_liboctave_error_handler) ("unrecoverable error in zpotrf");
  else
    {
      xrcond = 0.0;
      if (info != 0)
	info = -1;
      else if (calc_cond) 
	{
	  octave_idx_type zpocon_info = 0;

	  // Now calculate the condition number for non-singular matrix.
	  Array<Complex> z (2*n);
	  Complex *pz = z.fortran_vec ();
	  Array<double> rz (n);
	  double *prz = rz.fortran_vec ();
	  F77_XFCN (zpocon, ZPOCON, (F77_CONST_CHAR_ARG2 ("U", 1), n, h,
				     n, anorm, xrcond, pz, prz, zpocon_info
				     F77_CHAR_ARG_LEN (1)));

	  if (f77_exception_encountered)
	    (*current_liboctave_error_handler) 
	      ("unrecoverable error in zpocon");

	  if (zpocon_info != 0) 
	    info = -1;
	}
      else
	{
	  // If someone thinks of a more graceful way of doing this (or
	  // faster for that matter :-)), please let me know!

	  if (n > 1)
	    for (octave_idx_type j = 0; j < a_nc; j++)
	      for (octave_idx_type i = j+1; i < a_nr; i++)
		chol_mat.xelem (i, j) = 0.0;
	}
    }

  return info;
}

static ComplexMatrix
chol2inv_internal (const ComplexMatrix& r)
{
  ComplexMatrix retval;

  octave_idx_type r_nr = r.rows ();
  octave_idx_type r_nc = r.cols ();

  if (r_nr == r_nc)
    {
      octave_idx_type n = r_nc;
      octave_idx_type info;

      ComplexMatrix tmp = r;

      F77_XFCN (zpotri, ZPOTRI, (F77_CONST_CHAR_ARG2 ("U", 1), n,
				 tmp.fortran_vec (), n, info
				 F77_CHAR_ARG_LEN (1)));

      if (f77_exception_encountered)
	(*current_liboctave_error_handler) ("unrecoverable error in zpotri");
      else
	{
	  // If someone thinks of a more graceful way of doing this (or
	  // faster for that matter :-)), please let me know!

	  if (n > 1)
	    for (octave_idx_type j = 0; j < r_nc; j++)
	      for (octave_idx_type i = j+1; i < r_nr; i++)
		tmp.xelem (i, j) = std::conj (tmp.xelem (j, i));

	  retval = tmp;
	}
    }
  else
    (*current_liboctave_error_handler) ("chol2inv requires square matrix");

  return retval;
}

// Compute the inverse of a matrix using the Cholesky factorization.
ComplexMatrix
ComplexCHOL::inverse (void) const
{
  return chol2inv_internal (chol_mat);
}

ComplexMatrix
chol2inv (const ComplexMatrix& r)
{
  return chol2inv_internal (r);
}

/*
;;; Local Variables: ***
;;; mode: C++ ***
;;; End: ***
*/